

Eidgenössische Technische Hochschule Zürich

Chapter 8 PLANETLAB

Computer Networks
Timothy Roscoe
Summer 2007

Networks & Operating Systems Computer Networks T. Roscoe

PLANETLAB

Overview

- PlanetLab
 - Systems research in networking
 - · Many other approaches...
 - The state of Internet research today
 - The possible future of the Internet
- Other cool stuff from Prof. Wattenhofer
- Questions about the course, exam, life, etc.

Networks & Operating Systems Computer Networks T. Roscoe

PlanetLab is...

- Large collection of machines spread around the world for distributed systems research
 - I can deploy and run my code in Seoul, San
 Francisco, Rio de Janeiro, Moscow, Mumbai, ...
- Focus/catalyst for networking and systems community
 - Most major Universities now host sites
- Intel project ⇒ consortium of companies and universities

The value proposition

- · Institutions join, provide nodes
 - ≥ IA32 architecture servers
 - Hosted outside the firewall
 - Provide power, cooling, & bandwidth
- In exchange, researchers get to use a small "slice" of many machines worldwide.

Informatik
Computer Science
Networks & Operating Systems Computer Networks T. Roscoe

PlanetLab is not...

- A distributed supercomputer
- A simulation platform
- An Internet emulator
- An arena for repeatable experiments
- Completely representative of the current Internet

What is PlanetLab good for?

- Planetary-Scale networked applications:
 - Low latency to widely spread users
 - Span boundaries: jurisdictional and administrative
 - Simultaneous viewpoints: on the network or sensors
 - Hardware deployment is undesirable
- · Long-running services, not just experiments
- · Overlay networks

PlanetLab is...

- An opportunity to qualitatively validate distributed systems research in a real deployment environment
- · An opportunity to gain valuable experience about what works and what doesn't in the wide area at scale

Why is it successful?

- · Community "P2P"-like model
 - "network effects"
 - Lots of benefit from small entry fee
- Sliceability
 - Enables multiple approaches
 - Sharing of the platform
- · Virtual machine interface
 - Emphasis on multiplexing the machine
 - Isolation left to the VMM

Informatik
Computer Science
Networks & Operating Systems Computer Networks T. Roscoe

Lots of work done in big distributed systems...

- Researchers had no vehicle to try out their next *n* great ideas in this space
 - Lots of architectures
 - Lots of simulations
 - Lots of emulation on large clusters
 - Lots of folks calling their 17 friends before the next deadline
- but not the surprises and frustrations of experience at scale to drive innovation

Motivation

- · New class of services & applications emerging
 - Spread over a sizable fraction of the net
 - CDNs, P2P as the first examples
- Architectural components are beginning to emerge
 - Distributable hash tables provide scalable translation
 - Distributed storage, caching, instrumentation, mapping, ...
- · The next Internet will start as an overlay on the current one
 - as did the last one...
 - it will be defined by its services, not its transport
 - · translation, storage, caching, event notification, management
- There was NO vehicle to try out the next n great ideas in this area

Origins and progress

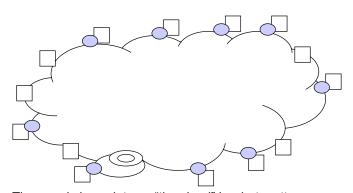
- · "Underground" meeting March 2002
- Intel seeds
 - First 100 nodes
 - Operational support
- First node up July 2002
- · By SOSP (deadline March 2003) 25% of accepted papers refer to PlanetLab
- Large presence at SIGCOMM
- 11 out of 27 papers in NSDI 2004
- Now...

So what are people running?

Networks & Operating Systems Computer Networks T. Roscoe

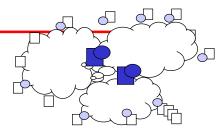
What is it good for?

- PlanetLab addresses the related problems of:
 - Deploying widely-distributed services
 - Evaluating competing approaches in a realistic setting
 - Evolving the network architecture to better support such services
- Only game in town for most networking research
 - Other than building into Azureus...
- See demo...


- Overlay Networks
- RON, ROM++, ESM, XBone, ABone, etc.
- Network measurement
 - Scriptroute, *Probe, I3, etc.
- Application-level multicast
 - ESM, Scribe, TACT, etc.
- Wide-area distributed storage
 Oceanstore, SFS, CFS,
 - Oceanstore, SFS, CFS, Palimpsest, IBP
- Resource allocation
 - Sharp, Slices, XenoCorp, Automated contracts
- · Distributed query processing
 - PIER, IrisLog, Sophia, etc.

- · Content Dist. Networks
 - CoDeeN, ESM, UltraPeer emulation, Gnutella mapping
- Management and Monitoring
 - Ganglia, InfoSpect, Scout Monitor, BGP Sensors, etc.
- · Distributed Hash Tables
 - Chord, Tapestry, Pastry, Bamboo, etc.
- Virtualization and Isolation
 - Denali, VServers, SILK, Mgmt VMs, etc.
- · Router Design implications
 - NetBind, Scout, NewArch, Icarus, etc.
- Testbed Federation
 - NetBed, RON, XenoServers
- Etc., etc., etc.

Networks & Operating Systems Computer Networks T. Roscoe


Guidelines

- Thousand viewpoints on "the cloud" is what matters
 - not the thousand servers
 - not the routers, per se
 - not the pipes

Guidelines

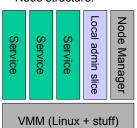
- · Each service needs an overlay covering many points
 - logically isolated
- · Many concurrent services and applications
 - must be able to slice nodes => VM per service
 - service has a slice across large subset
- · Must be able to run each service / app over long period to build meaningful workload
 - traffic capture/generator must be part of facility
- · Consensus on "a node" more important than "which node"

Networks & Operating Systems Computer Networks T. Roscoe

Guidelines

- Platform as a whole must be up a lot
 - global remote administration and management
 - · mission control
 - redundancy within
- · Each service will require its own remote management capability
- · Platform nodes cannot "bring down" their site
 - generally not on main forwarding path
 - proxy path
 - must be able to extend overlay out to user nodes?
- Relationship to firewalls and proxies is key

Networks & Operating Systems Computer Networks T. Roscoe

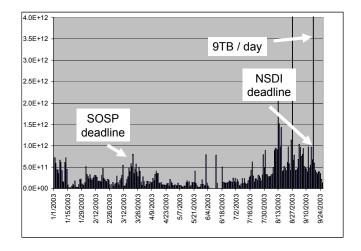

PlanetLab relationships

- - Shared control of nodes
- PlanetLab
 research users
 - Distributed virtualization, slices
- PlanetLab ⇔ research builders
 - Shared interfaces, unbundled mgmt
- PlanetLab ⇔ rest of the Internet
 - Isolation, security, packet auditing
 - See web interface for nodes...

Distributed Virtualization

- Services run in slices.
- Slice: set of virtual machines (slivers)
- Created by slice creation service acting as a broker

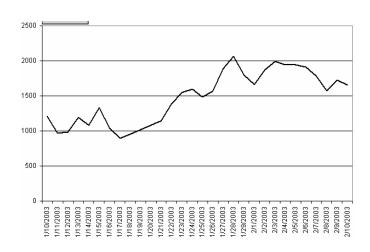
Node structure:


Requirements for slices

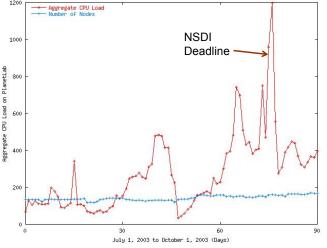
- Isolation of virtual machines:
 - Allocate resources
 - Partition or contextualize namespaces
 - Provide stable programming base
- Isolation of PlanetLab:
 - Resource accounting and limits
 - Auditing of slice actions (eg. packets)
 - Unexpected requirement!

Networks & Operating Systems Computer Networks T. Roscoe

Aggregate bandwidth usage



Networks & Operating Systems Computer Networks T. Roscoe


Pre-SIGCOMM 2003 deadline

(GB per day)

Informatik Computer Science

Aggregate CPU load

How to use PlanetLab

- Don't expect:
 - Repeatable experiments, other than very long-running studies
 - Large numbers of nodes (approx 500)
 - Lots of CPU (machines are loaded!)
 - High availability (machines reboot without warning)
- Do expect:
 - The unexpected!
 - Real experience running a service
 - Real users (if you want them)
 - Lots of interesting challenges
 - To find out if your idea really works

Informatik
Computer Science
Networks & Operating Systems Computer Networks T. Roscoe

Lessons from PlanetLab

- Nothing works as expected at scale!
 - Many unintended and unexpected consequences of algorithmic choices
 - Simulation results do not carry over well
 - · Simulate, deploy, measure, edit cycle
- Evaluating competing approaches "in the wild" refines techniques
- The ability to try things out "for real" seems to stimulate ideas

Best practice

- 1. Build a real system
- 2. Debug it in the lab on your own network
- 3. Try it out on PlanetLab to ensure it works
- 4. Experiment on EmuLab for repeatability
- 5. Use simulation for scalability
- 6. Cross-validate your results!
- 7. Deploy on PlanetLab to get real experience
- 8. Publish, graduate, get job as prestigious professor

What is PlanetLab doing to the Internet?

- PlanetLab functions as a disruptive technology
 - Applications use the network differently
 - The network sometimes reacts in a hostile manner
 - Leads to new requirements on infrastructure

Operational experience

- UDP replaces TCP?
 - N-to-N applications are different
 - Removes abstraction barriers
 - Aggressive application timeouts
 - · Late data choice
 - · Detailed information about network perf.
 - Still congestion controlled
 - DCCP not yet available

Informatik
Computer Science
Networks & Operating Systems Computer Networks T. Roscoe

Operational experience

- The Internet is extraordinarily brittle
 - Innovation resembles Denial-of-Service
 - IDSes default to "attack warning"
 - "Common cases" burned into routers
- PlanetLab now supports full packet auditing to end-users

Long-term aims

- PlanetI ab incubates the next Internet
 - Now: GENI (PlanetLab + pipes + \$400,000,000)
- New networks deployed as overlays over existing Internet
- Service-oriented network becomes the norm
- Computation as a localizable network resource

Conclusion

- Think of PlanetLab as a communal shared artefact for researchers
- Provides many diverse, overlapping projects around the world with a stable place to stand to change things
- Forum for exchange and composition of services and applications
- Selection environment based on real deployment and use
- Bottom-up approach to changing the world

