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1. Introduction

@ The Web graph is a directed graph of
nodes (pages) and directed edges
(hyperlinks)

@ Several 100 million nodes (grows
exponentially in time)

@ Today: more than two billion nodes
@ Average node has 7 hyperlinks

Reasons to study Web graph

@ Improve Web search algorithms
@ Topic classification
@ Topic enumeration

@ Growth of the Web and behavior of users
is becoming a serious commercial interest

2. Algorithms

@ HITS algorithm searches for high-quality
pages on a topic query

@ Topic enumeration algorithm enumerates
all topics (communities) of the Web graph

Terminology

@ Authoritative pages
are focused on a
particular topic

@ Hub pages contain
links to relevant

pages on the topic Authorities
Hubs




The HITS algorithm

@ Hypertext-induced topic selection

@ Reveals the most relevant pages on a
search topic

@ Sampling step
@ Weight-propagation step

Sampling step

@ Construct a subgraph expected to be rich in relevant,
authoritative pages
@ Keyword query to collect root set (~200 pages)

& Expand to base set
(1000-3000 pages) by
including all pages that
link to or are linked by
a page in the root set

@ Base set contains a large number of authoritative pages

Weight-propagation step

@ Extract good hubs and authorities from
the base set

@ Each page p has
— authority weight x,
— hub weight y,

@ Pages of large hub weights (good hubs)
point to pages of large authority weights
(good authorities)

Updating weights

@ Increase authority weight if page is pointed
to by many good hubs:

xl’ = zyz/
@ Increase hub weight if page points to
many good authorities:

DI

g

More mathematical...

@ Adjacency matrix A with entries (i,j):
— 1 if page i links to page j
—0 otherwise
@ Xx=(x, X, X,)
@ Y=(Yp Yy )
) new update rules:
x— ATy
y«— Ax

...Power iteration

@ x— ATy — ATAx = (ATA)x
@y« Ax — AATy = (AAT)y

@ Multiple iterations — Power iteration
—k iterations — (ATA )k
—x converges to
principal eigenvector of ATA




Conclusion

@ Output list contains
— pages with the largest hub weights
— pages with the largest authority weights

@ After collecting the root set,
the algorithm ignores textual content
Nevertheless it provides good search
results for a wide range of queries

Topic enumeration

@ Enumerates all topics www.ethz.ch

(processes entire graph)

www.unizh.ch

@ Bipartite core C, ;.

contains a complete www.epfl.ch
bipartite clique K; ;

Bipartite core C,;

2@ Intuition: Every well represented topic will contain a

bipartite core C,; for some appropriate i and j
L]

[—) enumerate all bipartite cores for some i and j

Naive Algorithm

Problems
@ Size of search space too large
108 nodes — 100 possibilities
@ Requires random access to edges
— large fraction of graph must reside in

Elimination-generation Algorithm

@ Number of sequential passes over the
graph

@ Pass consists of elimination and
generation

@ During each pass, the algorithm writes a
modified version of the graph to the disk

memory @ Alternately sort edges by source and
destination (no random access to edges
required)
Elimination Generation

@ Consider example C,;

@ Edges of nodes with
out-degree smaller 3
can be deleted because :
the node cannot participate -
on the left side

@ Nodes with in-degree
smaller 4 cannot
participate on the right side

@ Identify nodes u
that barely qualify for a core

@ Either output the core or prove that u
doesn‘t belong to a core, then drop u

@ Example: node « with in-degree exactly 4
only belongs to a C,; if the nodes that
point to u have a neighborhood
intersection of size at least 3




Observations

@ Experiment: over 90% of the cores are not
coincidental and correspond to
communities with a definite topic focus

@ Challenge: How to organize the
discovered communities?

@ Other interesting subgraphs: webrings,
cliques, directed trees

3. Measurements

@ Degree distributions
@ Number of bipartite cores
@ Connectivity of the graph

@ We will see that traditional random graph
models like G, , don‘t explain our
observations

Degree distributions

@ Measurements show that the in- and out-
degrees of the nodes are Zipfian
distributed

@ Zipfian distribution: probability a node has
degreei: P, ~ 1/i4, a =2
@G, has a binomial degree distribution:

n\ i 7.2
P,-=L.Jp’(1—p) (n=108,p=7)

In-degree distribution
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Out-degree distribution
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Number of bipartite cores

@ Experiment:
— over 100 million pages
— iranging from 3 to 6
— jranging from 3 to 9
@ Result: number of o in the Web graph
— over 100000 cores
— (=3, j=3:=40000 cores
— i=6, j=9: = 1'000 cores




Bipartite cores in a random graph

Number of C;;in G, ,, np = 7.2 (outdegree):

BRI

which is about 0 for ij > i +j

Connectivity of the Web

Disconnected components

(Source: Graph structure in the web)

Connectivity of the Web

@ Bowtie shape

@ Strongly connected core (SCC): every
page can reach every other by a path
(average 20 links)

@IN-pages: can reach the core
@ OUT-pages: can be reached by the core

@ Scale-free: subgraphs also have the
bowtie shape

4. Model

@ Reasons for developing a model
@ Requirements
@ A class of random graph models

Reasons for developing a model

@ Model structural properties of the graph
— degrees
— distribution of C;;
@ Predict the behaviour of algorithms on the Web
— show that an algorithm works well for
problems in the model, (but would perform
bad on worst-case graphs)
@ Make predictions about the shape of the Web
graph in the future

Requirements

@ Model should have an easy and natural
description

@ Capture aggregate formation of the graph
(not detailed individual behaviour)

@ Set of topics evolve from the model (no
static set required), the Web is dynamic

@ Reflect the measurements we have seen




A class of random graph models

@ Some page creators link to other sites
without regard to existing topics

@ Most page creators link to pages within
existing topics of interest
— find resource list for a topic and include
many links from the list in the page
— copying links
@ Random copying as a mechanism to
create Zipfian degree distributions

Stochastic processes

@ Creation processes C, and C, } discrete
@ Deletion processes D, and D, J imeprocesses

@ C, creates a node with probability a,(z)

@ D, removes a node with probability a,(z) and also
deletes all incident edges

@ D, deletes an edge with probability (1)

@ Choose probabilities to reflect growth rates of
the Web, half-life of pages, etc.

Edge creation process
@ Determine a node v and a number &

@ With probability 8 add edges pointing to
k uniformly chosen nodes

@ With probability 7-8 copy k edges from a
randomly chosen node «

@ If the outdegree of u is more than &, choose a random
subset of size k

a If the outdegree of u is less than k, copy the edges and
choose another node u*

A simple model

@ New node created at every time step
@ No deletions
@ Choose u uniformly at random

@ 3: new edge points to u O—0O«

@ [-B: copy the out-link from u v '

Simulation

@ Probability a node has indegree i
converges to 1/i*, a=1/1-p)

@ Number of cores significantly larger than in
a traditional random graph

Challenges

@ Study relationship between copying and
Zipfian distributions (applications outside
the Web: term frequencies, genome, etc.)

@ Study properties and evolution of the
random graphs generated by the model

@ Need efficient algorithms to analyze such

graphs because copying generates
myriads of dependencies




