
1

Peer-to-Peer
File Systems

Hannes Geissbühler
Seminar of Distributed Computing

WS 03/04

The Papers

Chord: A Scalable Peer-to-peer Lookup 
Service for Internet Applications 
Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Blakrishnan
MIT Laboratory for Computer Science

Wide-area cooperative storage with CFS
Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, Ion Stoica
MIT Laboratory for Computer Science

Ivy: A Read/Write Peer-to-Peer File System
Athicha Muthitacharoen, Robert Morris, Thomer M. Gil and Benjie Chen
MIT Laboratory for Computer Science

Goal of this Talk

To show how to build a peer-to-peer file 
system based on these three papers
To explain how the different layers of this 
peer-to-peer system work
Point out the problems of peer-to-peer file 
systems

Chord, a Distributed Lookup 
Protocol - Overview

Provides support for just one operation: 
given a key it maps the key onto a node 
(IP-address)
Chord is a scalable protocol for lookup in a 
dynamic peer-to-peer system with frequent 
node arrivals and departures
Chord uses a variant of consistent hashing 
to assign keys to Chord nodes

Chord, Runtime Aspects
Needs routing information about only O(log N) 
other nodes
Resolves lookups via O(log N) messages to 
other nodes
Maintaining routing information as nodes join 
and leave results in no more than O(log2 N) 
messages
When an Nth node joins or leaves the network 
only an O(1/N) fraction of keys are moved to a 
different location

Advantage of Chord compared 
to other Systems

Simple
Provable correct
Provable performance
Robust (in face of partially incorrect routing 
information)
Handles concurrent node joins and failures



2

System Model 
Load balance: Chord acts as a distributed hash 
function ->keys are evenly spread over the nodes
Decentralization: Chord is fully distributed. No node 
is more important than any other ->robustness
Scalability: The cost of lookup grows as the log of 
the number of nodes ->large systems are feasible
Availability: Chord automatically adjusts its internal 
tables -> nodes can always be found even when 
major failures in the network occur 

What Chord is not responsible 
for

Authentication
Caching
Replication
User-friendly naming of data

Consistent Hashing

Assigns each node and key an m-bit identifier
A node’s identifier is chosen by hashing the 
node’s IP address
A key identifier is produced by hashing the 
key

Assigning Keys to Nodes 1
Identifiers are ordered in an identifier circle 
modulo 2m

Key k is assigned to the first node whose 
identifier is equal to or follows k on the circle. 
This node is called the successor node
In a circle of numbers from 0 to 2m-1, 
successor(k) is the first node clockwise from k

Example Identifier Circle
Assigning Keys to Nodes 2

When a node n joins, certain keys previously assigned to 
n’s successor now become assigned to n
When node n leaves the network, all of its assigned keys 
are reassigned to n’s successor
Having N nodes and K keys following theorems hold:
-Each node is responsible for at most (1+ε)K / N keys
-When an (N+1)th node joins or leaves the network only 
responsibility for O(K / N) keys changes
One can prove a bound of ε = O(log N)



3

Key Location (Routing)
Each node need only be aware of its 
successor 
->queries can be passed around the circle
->inefficient
Chord maintains additional routing 
information
Additional information is not essential for 
correctness, which is achieved through the 
correct successors 

Additional Routing Information 
- The Finger Table

Each node maintains a routing table with at 
most m entries called the finger table
The ith entry in the table at node n contains 
the identity of the first node s that succeeds n 
by at least 2i-1 on the circle
S = successor(n+ 2i-1)
We call node S the ith finger
A finger table entry includes the Chord 
identifier and the IP address 

Example Finger Table Finger Table and Search

Searching a Node

Searching recursively the successor of a key 
over the finger nodes.
Every lookup roughly halves the distance on 
the circle
The number of contacted nodes to find a 
successor in a N-node network is O(log N)

Node Joins

2 invariants have to be preserved
- Each node’s successor is correct
- node successor(k) is responsible for k
To simplify joins and leaves a predecessor 
pointer is maintained



4

A Node Join

1. initialize the predecessor and fingers of 
node n
2. update the fingers and predecessors of 
existing nodes
3. move responsibility of keys

Stabilization

Having failures and concurrent operations the 
join algorithm discussed is to aggressive
Use stabilization protocol to keep nodes’ 
successors pointers
Every node runs stabilize periodically

Failures

Key is to maintain correct successor pointers
Each Chord node maintains a successor-list 
of its r nearest successors
Good length of successor list is log N

Problems of Chord

Partitioned rings
Malicious participants
Lookup latency

Chord Summary

Just one operation: maps key onto node
Simple, correct, scalable 
In simulations all good properties have been 
verified

CFS, the Cooperative File 
System - Overview

Peer-to-peer read only storage system
Provides distributed hash table for block 
storage (DHash)
Uses replicas and caches blocks



5

CFS File System

File system exists as a set of blocks 
distributed over available nodes
CFS client interprets blocks as file system

DHash

Splits files into blocks and distributes them
Maintains cached blocks and replicated 
copies
Supports pre-fetching of cached blocks to 
decrease latency

Software Structure File system format

Each block is a piece of file or a piece of 
meta-data (for example a directory)
Size of a block is in order of tens of kB
Publisher inserts root block signed with 
private key
Data is stored during a finite interval
No explicit delete operation

File System Structure Example Replication

DHash replicates each block on k other 
servers to increase availability
Replicas are maintained as peers come and 
go
Replicas are placed on the successor servers 
(easy to find through successor list)



6

Caching

DHash cashes blocks 
Each server has a fixed amount of disk 
storage reserved for cache
Least recently used replacement
Each node on the lookup path gets a cache 
copy
While searching each server has to check if 
the desired block is cached on the node

Caching Example

Load Balance

DHash spreads the blocks evenly around the 
ID space (hash function)
To accommodate different server capacities 
virtual servers are used
Virtual servers have direct access to other 
servers on the same machine
Number of servers can dynamically be 
adapted

Problems of CFS

DHash -> saving time is limited
No explicit delete operation
Virtual servers -> nodes are not independent
One small change in a file causes big effort in 
rearranging the data structure
Problems of Chord

Cooperative File System 
Summary

Highly scalable read only file system
Clients retrieve blocks from servers and 
interpret them as a file system
CFS uses caching and replication
Experimental results show that CFS is as fast 
as FTP

Ivy, a Read / Write Peer-to-Peer 
File System - Overview 

Ivy provides NFS-like semantics
Ivy consists solely of a set of logs
Resists attacks from non-participants by 
cryptographically verifying the data



7

Layers of Ivy Design

Ivy consists of a set of logs, one log per 
participant
Each participant appends only its own log but 
reads from all logs
Each participant maintains a private snapshot 
to avoid going through all logs

Log Data Structure

A log is a linked list of immutable log records
Each log is a DHash block
Log-head stores DHash key of most recent 
log record
Log records contain the Inumber(s) of the 
file(s) or directory they affect
Log records contain a version vector to 
guarantee causality

Views

Participants agree on a view
Users creating or changing a file system must 
exchange public keys
View block = pointers to all log-heads & root 
Inode

View and Logs Using the Log

File system creation
-create log(s), log–head(s), root Inode and the view

File creation
-append Inode log record 

File read
-scans all logs for records concerning the 
Inode



8

Snapshot
Application Semantics 1

Ivy defers writing file data until the application is 
closing the file
->only once per file-write a new log-head is 
inserted

updates can occur in order or at one time
->difficult for a decentralized file system
if version vectors are equal -> comparing 
participants public keys

Application Semantics 2

Combination of deletion and renaming
P1 wants to delete file a
P2 wants to rename file a to b
Ivy will return a success status to both, but 
the system agrees on the version vector 
order

Problems of Ivy

One has to save the logs forever
Unsolvable conflicts
Problems of underlying layers

Summary

Ivy is a peer-to-peer file system which is built 
on top of Chord and DHash
Ivy can operate a relatively open peer-to-peer 
environment
Experimental results show that Ivy is two to 
three times slower than NFS


