Chapter 3
Specification
Models

Lothar Thiele
Discrete Event Systems
Winter 2004/2005

Computer Engineering
and Networks Laboratory

m Swiss Federal
Institute of Technology 1

i

Overview

» StateCharts
» Motivation
» State hierarchy
* Representing computations
* Semantics
* Tools
» Petri nets
» Definition
» Token game
« Examples

» Extensions .
some of the transparencies are based on

lectures by Peter Marwedel, Dortmund.

m Swiss Federal Computer Engineering ’ﬁx
Institute of Technology 2 and Networks Laboratory

Motivation

» Deficits of finite automata for modeling:
 only one sequential process, no concurrency
« no hierarchical structuring capabilities
» Extension:
» StateCharts-Model von D. Harel [1987].
 StateCharts introduces hierarchy, concurrency and
computation.

» Model is used in many tools for the specification, analysis and
simulation of discrete event systems, e.g. Matlab-Stateflow,
UML, Rhapsody, Magnum.

» Complicated semantics: We will only cover some basic
mechanisms.

Computer Engineering
and Networks Laboratory

m Swiss Federal 3
Institute of Technology

TiK

Introducing hierarchy

FSM will be in exactly one
of the substates of Sif Sis
active

(eitherin AorinBor..)

f
. : ~-——--superstate
@W

m Swiss Federal
Institute of Technology 4

" substates

Computer Engineering rﬁ‘
and Networks Laboratory

Definitions

* Current states of FSMs are also called active states.

» States which are not composed of other states are called basic
states.

» States containing other states are called super-states.

» For each basic state s, the super-states containing s are called
ancestor states.

» Super-states S are called OR-super-states, if exactly one of the
sub-states of S is active whenever S is active.

S
- P —— ~
e b NG ST e ancestor state of E
WAAREB e B B o7
T - /
~
SN
N2
Swiss Federal Computer Engineering 1
m Institute of Technology 5 and Networks Laboratory ﬁx

Concurrency

Convenient ways of describing concurrency are required.

AND-super-states: FSM is in all (immediate) sub-states of a
super-state.

answering-machine

| an
P - . T - N
" line-monitoring i key-monitoring (excl. on/off)
1
T ring —— ! .~ key pressed -
/ e Iy e
{ . 1 { [1
| Lwait Lproc I Kwait Kproc
AN o
1 : — done
I (caller) ! |
. ! .
- |
I
i Il |
key l:mlI key-off
g
o —={off |
Swiss Federal Computer Engineering 1
m Institute of Technology 6 and Networks Laboratory ﬁx

Entering and leaving AND-super-states

|answering—machine|

[on |

line—monitoring

key—monitoring (incl. on/off)

:
I
I
ring : key pressed
. |
: done
I
|
|
|

(caller)

i hangup i

m Swiss Federal Computer Engineering rﬁ‘
Institute of Technology 7 and Networks Laboratory

Tree representation of state sets

basic OR-super-state AND-super-sta/e
state A ||3A | <

© RIEE I ENRIE

[al

B E] B E
® ool o o
G LB T

®

Computer Engineering 1ﬁ‘
and Networks Laboratory

© é

m Swiss Federal s
Institute of Technology

Computation of state sets

» Computation of state sets by traversing the tree from
leaves to root:

* basic states: state set = state
¢ OR-super-states: state set = Cartesian product of children

* AND-super-states: state set = union of childr?{g}\

o e
Qu=QL Qs =QrUQg /{E}\
Qr=Qg xQu, Qg =QcUQp G\ ”\

Qep=QrUQM, Qa=QpxUEg
Qa=(QcUQp) x (QuUUQruk) xQr))
m I?-lvsv:isliliegfe;'ilchnology 9 andcﬁgxgligfgg?re;g&g TN‘

Representation of computations

» Besides states, arbitrary many other variables can be
defined. This way, not all states of the system are
modeled explicitly.

* These variables can be changed as a result of a state
transition (“action”). State transitions can be dependent
on these variables (“condition”).

action unstructured
state space
variables
condition

m Swiss Federal Computer Engineering 1”‘
Institute of Technology 10 and Networks Laboratory

General form of edge labels

Q event [condition] / reaction @
Event:

Events exist only until the next evaluation step of the model
Can be either internally or externally generated

Condition:
Refer to values of variables that keep their value until they are
reassigned.

State transition:
Transition is enabled if event exists and condition evaluates to

true
Reaction:
Can be assignments for variables (“action”) and/or creation of
events
ETH "oy 1 and Newworks Laporaory I S

Events and actions

» “event” can be composed of several events:

e (el and e2) : event that corresponds to the simultaneous
occurrence of el and e2.

« (el or e2) : event that corresponds to the occurrence of either
el or e2 or both.

* (not e) : event that corresponds to the absence of event e.

» ,action“can also be composed:
» (al; a2) : actions al und a2 are executed sequentially.

» All events, states and actions are globally visible.

m Swiss Federal Computer Engineering 1ﬁ‘
Institute of Technology 12 and Networks Laboratory

Example The StateCharts simulation phases
elal [c]/a2
¢ - - How are edge labels evaluated in one ‘simulation’ step?
e. TT Three phases:
al: " .
22" ! 1. Effect of changes on events and conditions is evaluated,
c: 1 ;;Llfe 2. The set of transitions to be made in the current step and right
hand sides of assignments are computed,
€. TT 3. Transitions become effective, variables obtain new values.
al:
az: t
c: true
false
m ﬁ-lvsv:islilzegfe;'zlchnology 13 andcr\?gxg:?sfggg]rea?g&g TN‘ m ﬁvs\,:iﬁltiegfe‘:'zlchnology 14 andcr\?gmr;loj:irsfgggrea?g&g 1ﬁx
Example Steps
swap . Execution of a model consists of a sequence of (status, step)
pairs.
Status Step Status Step Status Step Status
ela:=b : elb:=a S 2 *alnll e =0
_] Status= values of all variables + set of events + current time
In phase 2, variables a and b are assigned to temporary _ .
. Step = execution of the three phases
variables.
In phase 3, these are assigned to a and b. 1
As a result, variables a and b are swapped. nas®
phase 2
Phase 3
m ﬁ-lvsv:islilzegve;zlchnology 15 andCSng:E;Eg%glreafggg Tﬁ‘ m ﬁ'lvsvlifltiegfe‘:'aelchnology 16 andcﬁgxg}ﬁgfr;%glre;g&g 1ﬁ‘

More on semantics of StateCharts

Examples

» Unfortunately, there are several time-semantics of E |
StateCharts in use. This is one possibility: (49 i (t2) (19) 5 (12)
« A step is executed in arbitrarily small time. e ele A b
] 1
« Internal (generated) events exist only within the next step. (81) 5 (B2) () | (82
I
< External events can only be detected after a stable state ' '
has been reached.
state diagram:
stable state
______________________________________ external events
S = A 1 2 a, u
stable stable ac/;/ |\z°/=’ / \
state { T T F,tate T i fstate i welate:
transitions 4 t 7 BLaz A, 52 ‘
S AN N q\‘” ~—— a/a’ c/e’ a/b
transport of internal events step B1.B2 B1,B2
ETH " oy v and neworke Laborocory. I AR ETH ' oo and vewworis Laboraory, I S
Example Example
o Non'determ|n|sm state diagram (On|y
2 — A 4 4 stable states are
A C E ’ ‘ G "—‘ represented):
a a B
B D Fl | HI—e
J N
aorb J Tb
state diagram: £ G.H
a a—" la and b
AB cD \ FH aorb
ETH "oy 1 and neworke Laborecory. I AR ETH ' oo 20 and vewworks Laboraory, I S

Summary

* Advantages of hierarchical state machines:

» Simple transformation into efficient hardware and software
implementations.

« Efficient simulation.

Example UML

 UML (unified modeling language) is used for the
specification of large software systems and embedded (real-
time) systems. The dynamics of a system are modeled using
StateCharts and ActivityCharts (similar to Petri Nets).

& Hatonal Hose - NesbedStates.mdl - [Stabe Diaaran: CowrseDliesinal
Bl fie Ed Mow fowen Boron Jook fddbe wide Heo

» Basis _for fqrmal verification (usually via symbolic model QIDEIEI-I“EJ-IQ,TEIHAIMEIEIEI 2leleis) : 3 Iﬂ-argﬂﬁ etz
checking), if in reactions only events are generated. o8 |§ . : O AlE = o =3
 Disadvantages: = ‘ = -
« Intricate for large systems, limited re-usability of models. % ——- %
» No formal representation of operations on data. 5 % __
¢ Large part of the system state is hidden in variables. This E
limits possibilities for efficient implementation and formal ==
verification. . . e)
— et 2l s o
ETH 5o 2 and neworke Laboracory. I A ETH " oo 2 and Neworke Laporacory. I A,
= o car
StateFlow Petri nets - Motivation
» Part of * In contrary to hierarchical state machines, state
Matlab- transitions in Petri nets are asynchronous. The ordering
Simulink of transitions is partly uncoordinated; it is specified by a
partial order.
* Combines » Therefore, Petri nets can be used to model concurrent
discrete distributed systems.
event and e There are many models of computation in use that are
continuous variants or specializations of Petri nets, e.g.
models « activity charts (UML)
« data flow graphs and marked graphs
 Finite state machines can be modeled in Petri nets.
ETH 5oy ETH .55 2 and Neworke Laporacory. I A

Net graph

A net graph is a tupel N = (S,T,F) with SN
T = (. The elements s € S and t € T are
denoted as places and transitions, respectively,
and define the nodes of the net. The relation
FC(SxT)U(T x S) defines the edges of the
net.

The pre-set and post-set of a place or transi-
tion = are defined as

ex ={yeSUT : (y,x) € F}
ze={yeSUT : (z,y) € F}

Net graph - example

* The net-graph is a bipartite graph.

Sy 1

pre-set of § 3

33

 post-set of 53

m ﬁvgiiitzegfe;ilchnology 25 andcr\?g:mp/g:irsfggglrea?ggg Tﬁx m ﬁv;,l‘iﬁltzegfe‘:'ilchnology 26 andcr\?gwploj:ilsfggg]rea?g&g rﬁx
Petri net - definition Token game of Petri nets
A tupel (S,T,F,M,My) denotes a Petri net. A marking M activates a transition t € T iff
Then (S,T,F) is a net-graph, the marking M M(s) > 1 for all s € et. If a transition ¢
is a function M : S — Zsqg and My denotes is activated by M, then a state transition to
the initial marking. a the marking M’ happens eventually. The as-
sociated state transition function with M’ =
« The state of a Petri net is its marking M. f(M, 1) is
* M(s) denotes the marking of a place s. Usually, we say
that place S contains M(s) token. In other words, the M(s) —1 if s€et\te
distribution of tokens on places defines the state of a Petri M'(s) ={ M(s)+ 1 if scte\et
net. M(s) otherwise
* The dynamics of a Petri net is defined by a ‘token game’.
m avsvlﬁitzeg!e{'zlchnology 27 and(ﬁg:xg:ﬁ;fl;gg}e;g&g Tﬁ‘ m ﬁvsvl‘iilzegfe‘:'zlchnology 28 andcﬁgﬁg:ﬁgfgggﬁ?g&g Tﬁ‘

Example

producer finite length buffer consumer

initial token

+ Initial state represented as state vector: M, = (1,0,0,2,1)
* Activated transitions: t,
» After firing t, M =(0,1,1,1,1) .

Example continued

» Activated transitions: t,, t; .

* Non-deterministically, one of them is chosen for firing,
e.g. t;. Then we obtain as new state M = (0,1,0,2,1).

* We can see the ‘properties’ of Petri nets: Asynchronous

firing of activated transitions, possibility to model
distributed systems.

ETH 5o 2 andnemoris opororery, B AR ETH "5 % ancNeworks caporerory’ B NI
Example continued Modeling capabilities
: : » But we can also systems with unbounded state set!
« If the number of token in the network is bounded, we can oroducer y buffer consumer
determine a finite state transition graph.
Sy
t, S ty
t, O D@) S5
Sz
0,1,1,1,1) ~ (1,0,2,0,1) * And we can model basic scenarios such as
conflict fork join/synchronization
ETH 5oy s andemoris opororory, I S ETH "o % ancNeworks caporerory’ B NI

Common model extensions

» Associating weights W to edges:
» Transition t is enabled if there are at least W(s,,t) token in
S;.
« If transition t fires, then W(t,s,) token are added to place s,
and W(s,,t) token are removed from s,.

Slztss2 Slztssz
@—'H—’()':>‘—’I—" ®

* Adding time to transitions:
¢ Specification of discrete event systems with time!

« One possibility: A transition fires iff it was continuously
activated for a certain time period.

m Swiss Federal Computer Engineering 1"
Institute of Technology 33 and Networks Laboratory

Common model extensions

* Individual tokens:
» Tokens can ‘carry’ data.

« Transitions operate on data of input tokens and associate
data to output token.

¢ The activation of a transition can be dependent on data of
token in places of its pre-set.

a b a b

6 2

[0<0] / ¢ = ab [b=0] / error := ‘div0’

Cc error c error

m Swiss Federal Computer Engineering 1"
Institute of Technology 34 and Networks Laboratory

What can we do with Petri nets?

* We can model (timed, distributed) discrete event systems.

* We can simulate them using tools, e.g. MOSES.

* We can analyze their timing properties. Methods exist, if
the delays of token are constant or even determined by
stochastic processes.

* We can answer questions like:

« What is the maximum number of tokens in a specific place?
* Is the Petri net bounded (bounded number of tokens under
any firing sequence)?

» Does the Petri net eventually enter a state where no transition
is activated (deadlock) ?

« Several methods are available to answer these questions (not
part of this lecture).

m Swiss Federal Computer Engineering rﬁ‘
Institute of Technology 35 and Networks Laboratory

Example MOSES

-

Funcion ned = new .u;l} . bl

Susfh (3 = 0) 5 ~ instsficent(], sva uti List)
-t Il

] I |

[Fean
& Mases Tost St 1) 1068 2000 FTHIES=—
m Swiss Federal Computer Engineering 1ﬁ‘
Institute of Technology 36 and Networks Laboratory

