Discrete Event Systems

Verification of finite state automata

Computer Engineering and Networks Laboratory
Lothar Thiele

m Swiss Federal 1 Computer Engineering ¥
Institute of Technology and Networks Laboratory

Verification of Finite State Automata

Q Questions:
— Does the specification correctly describe the desired behavior?
— Do specification and implementation match?
— Can the system reach dangerous states?

Q Possible approaches:

— Simulation (validation): Success depends on right input
patterns; can at most show the existence of some errors but not
the absence.

— Formal Analysis (verification): Formal proof of correctness.

m Swiss Federal 2 Computer Engineering
Institute of Technology and Networks Laboratory

Verification of Finite State Automata

0 Because of the finite number of states, verification is possible in

principle by enumeration.

O Because of the finite size of memory, the correctness of processors,
software, communication systems, ... could be shown.

O But is this a feasible approach?

state transition

m— and output function |e———— # bits # states
(e.g. Boolean network) 8 Bit 256
32 Bit 410°
1 T LkBit | 10%
1 Mbit 10300.000
state 1 GBit 1300.000.000

(e.g. registers)

m Swiss Federal 3
Institute of Technology

Computer Engineering
and Networks Laboratory

Verification of Finite State Automata

O In recent years, there was a break through here!
Q Symbolic Model Checking:

— Formulation of questions in terms of logic formulas (temporal
logic). In this lecture, we will NOT cover this because of lack of
time! Only a simple question will be tackled (reachability).

— Efficient representation of sets and relations using OBDDs
(ordered binary decision diagrams).

O The methods are used in industry for proving the correctness of
digital circuits (control path, arithmetic units) and of safety critical
embedded systems (traffic control, airplane control, ...).

m Swiss Federal 4 Computer Engineering #;
Institute of Technology and Networks Laboratory

Principles

a Comparison of specification and implementation:

reference I > 6@? \
data structure / ‘comparisonl
system under testI > 6@

Q Proof of properties:

‘s)’stem under testI — 6@ \
data structure
‘ question I

m Swiss Federal 5 Computer Engineering #
Institute of Technology and Networks Laboratory

(fixed point)
calculation

answer

Compare Specification and Implementation

Q Problem I: y=(x+Xy) X3
— Specification using a Boolean function.

— Implementation using a Boolean circuit. 1 °—> _
\Xz oO—> S
N S +p—>° y
° ° ° ° Oo— o—
— Method (convert circuit into function, "3 T

rewrite terms, normal forms ...) ???

Q Problem 2:
— Specification of a state machine using transition function.

— Implementation using a Boolean circuit.
— Method (unknown state encoding, huge # execution paths) ???

m Swiss Federal 6 Computer Engineering #;
Institute of Technology and Networks Laboratory

Ordered Binary Decision Diagrams (OBDD)

O OBDDs can be used to efficiently represent Boolean functions, sets,
(output and transition) relations.

O Because of the unique representation of Boolean functions, they can
be used to proof equivalence.

Q Operations on Boolean functions can be done efficiently.

O They can be used only if sets, relations, ... are finite.

m Swiss Federal 7 Computer Engineering
Institute of Technology and Networks Laboratory

Ordered Binary Decision Diagram (OBDD)

Q Concept:

— Data structure for the representation of
Boolean functions. X1V Xy VX3

— Unique (if reduced by removing redundant
parts and if variable ordering is fixed).

— Based on decision tree.
Q Form:
— Decision nodes that are associated to variables
— Edges denote false (0, green) or true (1, red)
— Leaves denote function values

(xX; V X5) A X3

m Swiss Federal 8 Computer Engineeri
Institute of Technology and Networks Laborato

Decomposition

O BDDs are based upon the Boole-Shannon-decomposition

f:)_c.f‘xzo-l_x.f‘x:l

— for each free variable, the function has two co-factors

f ‘ x=0| result for x=0

/

f ‘x=1 result for x=1 |

m Swiss Federal 9 Computer Engineering i
Institute of Technology and Networks Laboratory

Ordering of Variables

— Reduced BDDs are unique for a given fixed variable ordering.
— Therefore, ordered BDDs are used (OBDDs).

— The size of a BDD depends on the ordering (and can be
exponential

(ay A by)V
(ay Aby)V
(a3/\b3)

m Swiss Federal 10 Compurer cngineerin
Institute of Technology and Networks Laboratory

Calculations with BDDs

a RESTRICT: f|._,

Operation: Delete edges corresponding to x =k and
apply simplification rules.

Q APPLY: f <op>g with a Boolean operator op

Operation: f and g are given as BDDs. Apply a recursive
algorithm on f and g based on

f<op>g=x-(f| _,<op>g| _)+x-(f| _ <op>gl _)

m Swiss Federal 11 Computer Engineering #;
Institute of Technology and Networks Laboratory

Calculations with BDDs

Q Boolean expressions are converted to BDDs step by step.

V=X =X

Y=y ®x3
QA Circuits are converted to Boolean functions first (based on a
topological ordering of the gates).

Q Quantors are represented using APPLY and RESTRICT:

A f(x) o flx) ot (x), . =,0)+£(1)
Vx:f(x) & fx),_o f(x), =,(0) (1)

e, X0 f (x1,2) > T2 Gy 2 f (%1, %))
Vg, Xp 1 f (X1, X0) € Vo 0 (W 1 f (3, %)

m Swiss Federal 12 Computer Engineering #;
Institute of Technology and Networks Laboratory

y=(x=2>x%)®x3 —s

Sets and Relations

0O Representation of a subset AC E E
— Binary coding o(e) of elements ec £ O
— A is represented by characteristic function Q

ac A < yy (o(a))

" Y
6,=(0,1,0) o©,=(0,0,0)

— Operations on sets: B
ce ANB <y (o(c))-wg(o(c)) v4(01)=0

ce AUB oy, (0(0) +wy(o(e) — A=
ce A-B oy, (0(0) Wy (0(0)

— Example:
P W, =xy®x < A={01,10"}

m Swiss Federal 13 Computer Engineering #;
Institute of Technology and Networks Laboratory

Sets and Relations

0 Representation of a relation R C AX B ;

— Binary coding o(a),0(b) of elements ac A,be B

— R is represented by

re R & yp(0(a),0(b))

0O Example finite state automaton:

g
u—>/7
> T

X /

—)y

W (u,x,x') =1
. o
. Yo (u,x,y)=1

A

m Swiss Federal
Institute of Technology

14

Computer Engineering &,

and Networks Laboratory

Equivalence of Boolean Circuits

Q Comparison between specification and implementation or between
two implementations.

Q Method:
— Represent the two systems as OBDDs by applying the APPLY
operator repetitively.

— Compare structure of OBDDs. @

0 Example: D \
N
y=(x1+x5) X3 —_— D

xl o——>

m / Comparison

Y Y

X2 o—> +P
- @

Y Y

X3O_

m Swiss Federal 15 Computer Engineering #;
Institute of Technology and Networks Laboratory

Reachable States

Q Problem: Is a state xe X reachable ?

Q Solution:
— Represent state sefs and transition relations as OBDDs.
— Transform sets of states.

— Iterative transition until a stable set of states is obtained.

Xo={x} Xi=Xouin} Xo=XjUlx,%) X;=X,U{x,x]

X0 X0 X0 X0
X3 X1 A3 X1 A3 X A3 X
X2 X2 X2 X2

m Swiss Federal 16 Computer Engineering
Institute of Technology and Networks Laboratory

Reachable States

Q Core transformation:

— Determine the set of all direct successor states of a given state
set X using transition relation f:

X'=Im(X, /)= {x':EIx mit WX(x) /\l//f(xax')}

Yy(x) wrnx') yy(x')
/

— Calculation:

h(x,x') =Wy (x) ¥ f (x%alculation using OBDDs |
Wi (x") = (3x:A(x,x"))

m Swiss Federal 17 Computer Engineering #;
Institute of Technology and Networks Laboratory

Reachable States

Q Fixed point calculation:

— Starting from a set of initial states, determine the set of states
that can be reached in one or several steps:

Xy = {xo }
f X, =X ulm(X,f) until X, =X,
Wy, ()= (x)+@Ox:py (X)W, (x,x"))

— Because of the finite set of states, a fixed point exists and is
reached in finite time.

— Test whether a state is reachable using resulting BDD.

m Swiss Federal 18 Computer Engineering
Institute of Technology and Networks Laboratory

Equivalence of Finite State Automata

O A method based on reachability is described:

u Y =g1(x)
1 flagl 1 1\AM

. —y=1 6 y=y,
Uy Afzagzl Y2 =82(x)

— Calculate the reachable states of the combined automaton.
— Compare the outputs for equality.

m Swiss Federal 19 Computer Engineering #;
Institute of Technology and Networks Laboratory

Equivalence of Finite State Automata

O Calculate the common transition function:

(X, x0, X0, x0") = (Fuey o (u,x0,x0") - W g, (4,7, X5'))

O Determine the set of reachable states (as before):

Wy (X1,%;)

O Determine the set of reachable output values:

Wy (Y1, y2) = (3x1, %00 W x (X1, %) W o (X1, V1) W, (X2, 12))

O Automata are different if the following term is true:
v Wy (1, 02)- (O # 2)

m Swiss Federal 20 Computer Engineering #;
Institute of Technology and Networks Laboratory

Verification of Finite State Automata

d

m Swiss Federal 21 Computer Engineering #;
Institute of Technology and Networks Laboratory

Check time properties of a finite state automaton, for example:

1. Can a reset state reached from every reachable state?

2. Is every request followed by an acknowledgement, eventually?
3. Are the outputs equal for all reachable states ?

Usually, these questions are formulated by an expression in some
temporal logic, for example CTL (computation tree logic).

Operators and quantors:

— X: in the next step; F: eventually; G: every times
— A: for all paths; E: for at least one path

We will not explore this further

Concluding Remarks

Q Possible extensions:
— Proof of properties in absolute time using the concept of clocks.

— Verification of systems with a potentially unlimited number of
states.

— Combination of discrete event systems and systems with
continuous state (hybrid systems).

O Public domain software available, e.g. SM}":
— General input language for system specification.
— Accepts CTL formulas.

— Produces counter examples.

m Swiss Federal 22 Computer Engineering #;
Institute of Technology and Networks Laboratory

Example: Counter Verification with SMV

MODULE main
VAR
bit0 : counter_cell(1);
bitl : counter cell(bit0.carry out);
bit2 : counter_ cell(bitl.carry out);
SPEC AF bit2.carry_out
-- "For all execution paths, the value of bit2.carry_out will eventually be false." This will be true.
SPEC AG !bit2.carry_out
-- "For all execution paths, the value of bit2.carry out will be false every times."
-- This will be false and a counter example will be produced.

MODULE counter_cell(carry_in)
VAR
value : boolean;
ASSIGN
init(value) := 0;
next(value) := (value + carry_in) mod 2;
DEFINE
carry_out := value & carry_in;

m Swiss Federal 23 Computer Engineering
Institute of Technology and Networks Laboratory

