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Verification of Finite State Automata
Questions:
– Does the specification correctly describe the desired behavior?
– Do specification and implementation match?
– Can the system reach dangerous states?

Possible approaches:
– Simulation (validation): Success depends on right input 

patterns; can at most show the existence of some errors but not 
the absence. 

– Formal Analysis (verification): Formal proof of correctness.
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Verification of Finite State Automata
Because of the finite number of states, verification is possible in 
principle by enumeration.
Because of the finite size of memory, the correctness of processors, 
software, communication systems, … could be shown. 
But is this a feasible approach?
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Verification of Finite State Automata
In recent years, there was a break through here!
Symbolic Model Checking:
– Formulation of questions in terms of logic formulas (temporal 

logic). In this lecture, we will NOT cover this because of lack of 
time! Only a simple question will be tackled (reachability).

– Efficient representation of sets and relations using OBDDs
(ordered binary decision diagrams). 

The methods are used in industry for proving the correctness of 
digital circuits (control path, arithmetic units) and of safety critical 
embedded systems (traffic control, airplane control, …). 
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Principles
Comparison of specification and implementation:

Proof of properties:
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Compare Specification and Implementation
Problem 1:
– Specification using a Boolean function.
– Implementation using a Boolean circuit.

– Method (convert circuit into function,
rewrite terms, normal forms …) ???

Problem 2:
– Specification of a state machine using transition function.
– Implementation using a Boolean circuit.
– Method (unknown state encoding, huge # execution paths) ???
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Ordered Binary Decision Diagrams (OBDD)
OBDDs can be used to efficiently represent Boolean functions, sets, 
(output and transition) relations.

Because of the unique representation of Boolean functions, they can 
be used to proof equivalence.

Operations on Boolean functions can be done efficiently.

They can be used only if sets, relations, … are finite.
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Ordered Binary Decision Diagram (OBDD)
Concept:
– Data structure for the representation of 

Boolean functions.
– Unique (if reduced by removing redundant 

parts and if variable ordering is fixed).
– Based on decision tree.

Form:
– Decision nodes that are associated to variables
– Edges denote false (0, green) or true (1, red)
– Leaves denote function values
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Decomposition
BDDs are based upon the  Boole-Shannon-decomposition

– for each free variable, the function has two co-factors

result for x=0

result for x=1
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Ordering of Variables
– Reduced BDDs are unique for a given fixed variable ordering.
– Therefore, ordered BDDs are used (OBDDs).
– The size of a BDD depends on the ordering (and can be 

exponential)
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Calculations with BDDs
RESTRICT: 

Operation: Delete edges corresponding to            and 
apply simplification rules.

APPLY:                       with a Boolean operator op

Operation: f and g are given as BDDs. Apply a recursive 
algorithm on f and g based on
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Calculations with BDDs
Boolean expressions are converted to BDDs step by step.

Circuits are converted to Boolean functions first (based on a 
topological ordering of the gates).
Quantors are represented using APPLY and RESTRICT:
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Sets and Relations
Representation of a subset               :
– Binary coding            of elements 
– A is represented by characteristic function 

– Operations on sets:

– Example: 
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Sets and Relations
Representation of a relation                  :
– Binary coding                    of elements
– R  is represented by

Example finite state automaton:
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Equivalence of Boolean Circuits
Comparison between specification and implementation or between 
two implementations.
Method:
– Represent the two systems as OBDDs by applying the APPLY 

operator repetitively.
– Compare structure of OBDDs.

Example:
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Reachable States
Problem: Is a state            reachable ?
Solution:
– Represent state sets and transition relations as OBDDs.
– Transform sets of states.
– Iterative transition until a stable set of states is obtained.
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Reachable States
Core transformation:
– Determine the set of all direct successor states of a given state 

set X using transition relation f:

– Calculation:
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Reachable States
Fixed point calculation:
– Starting from a set of initial states, determine the set of states 

that can be reached in one or several steps:

– Because of the finite set of states, a fixed point exists and is
reached in finite time.

– Test whether a state is reachable using resulting BDD.
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Equivalence of Finite State Automata
A method based on reachability is described:

– Calculate the reachable states of the combined automaton.
– Compare the outputs for equality.
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Equivalence of Finite State Automata
Calculate the common transition function:

Determine the set of reachable states (as before):

Determine the set of reachable output values:

Automata are different if the following term is true:
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Verification of Finite State Automata
Check time properties of a finite state automaton, for example:
1.   Can a reset state reached from every reachable state? 
2. Is every request followed by an acknowledgement, eventually?
3. Are the outputs equal for all reachable states ?

Usually, these questions are formulated by an expression in some
temporal logic, for example CTL (computation tree logic). 
Operators and quantors:
– X:  in the next step; F: eventually; G: every times
– A: for all paths; E: for at least one path
We will not explore this further … .
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Concluding Remarks
Possible extensions:
– Proof of properties in absolute time using the concept of clocks.
– Verification of systems with a potentially unlimited number of 

states.
– Combination of discrete event systems and systems with 

continuous state (hybrid systems).

Public domain software available, e.g. SMV:
– General input language for system specification.
– Accepts CTL formulas.
– Produces counter examples.
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Example: Counter Verification with SMV
MODULE main
VAR

bit0 : counter_cell(1);
bit1 : counter_cell(bit0.carry_out);
bit2 : counter_cell(bit1.carry_out);

SPEC AF bit2.carry_out
-- "For all execution paths, the value of bit2.carry_out will eventually be false." This will be true.

SPEC AG !bit2.carry_out
-- "For all execution paths, the value of bit2.carry_out will be false every times." 
-- This will be false and a counter example will be produced.

MODULE counter_cell(carry_in)
VAR

value : boolean;
ASSIGN

init(value) := 0;
next(value) := (value + carry_in) mod 2;

DEFINE
carry_out := value & carry_in;


