
Till Kleisli, tillk@student.ethz.ch
Critical Evaluation of (e)POST and Porcupine

What is a Distributed Mail Server?
Even if both papers have the same topic, the resulting system is quite different. I didn't find any
explicit statement about it, in both papers, but from details you can guess that the two groups of
authors had something different in mind, when they wrote their paper. (e)POST is rather designed to
be used on desktop PCs that are also used as normal workstations. Unlike Porcupine, where such a
usage wouldn't make sense for different reasons. The effort to rebuild the whole index structures for
example, if a node leaves or joins the cluster, meaning turning off or on a personal computer. For
Porcupine it makes more sense to use it on a dedicated cluster of small machines, like google. The
problems with (e)POST on a dedicated cluster have different reasons, one of it is its bad
interoperability with the existing email infrastructure.

The Principle of Functional Homogeneity
The principle of functional homogeneity, meaning that every node can perform any function, is used
in both systems, even though only Porcupine states it explicitly. I think this is a principle principle
for distributed systems, because the functionality of a system should also remain available, even if
some nodes fail. You could also implement a quorum-based solution, like in data replication, where
a quorum of nodes implements a given functionality. But I think that isn't really needed, because
functionality normally doesn't change over time (at least not very often), so you don't get update
problems. And functionality normally also doesn't need much disk space, so it can easily be
replicated at all nodes.

Secure Email
Porcupine handles emails as today's mail servers like postcards. Anyone who has access to the post
office or the mail server can read any mail. So it doesn't get worse, but it also doesn't get better. A
good point on (e)POST is the built in digital encryption and singing of messages. That means,
functionality that has to be added manually nowadays by installing PGP for example, is already built
into the mail system. Which is needed, because in (e)POST, every user potentially stores other users
mail on his desktop and a spy wouldn't even have to get access to the mail server any more, to read
other users mail. But on the other hand this functionality needs a certificate authority which is not
included in the POST system, so you also have to combine it with other software, to use it.

Disk Space
We don't have to consider disk space in the Porcupine system, because in principle its like a normal
mail server, just distributed. So if data can be handled on one server it can also be handled on a
distributed system.
In (e)POST, there are two „special features“ concerning disk space. The positive one is possible,
because the headers and the bodies and attachments of emails are stored separately. So if an
attachment is sent by many people, or a message is forwarded, the attachment or the message body
has to be stored only once, and the header contains a reference to the body or the attachment
respectively. This is a nice solution to save disk space, but (e)POST needs such solutions, because in
the underlying storing system PAST, no objects can be deleted. That means every mail that has ever
been sent or received through the (e)POST system is stored forever in PAST. In the POST paper they
state: „Thus, the amount of available disk space in the system must be increasing and greater than
the total storage requirements, which is reasonable to expect in a p2p environment where each
participant is required to contribute a portion of her desk top's local disk.“. I actually don't see why
this should be reasonable, and it reminds me of a economical principle called „Snowball system“,
which only works if the number of participants is increasing exponentially. And which is forbidden
in Switzerland, by the way.

Performance
There is no part dealing with the performance of the (e)POST system in the paper. Probably they
don't have any data because there exist prototype implementations of ePOST and POST, but they are
currently under experimental evaluation.
As opposed to the Porcupine paper, where almost half of the paper is about System Evaluation and
Performance. They built a heterogeneous cluster with 30 nodes as a prototype implementation. The
assumed model is described in detail in the paper, but I will just summarize the results here. With
no replication, Porcupine can handle much more messages per second than a conventional mail
server, but that doesn't make much sense. For replication, the performance of Porcupine scales
linearly when each incoming message is replicated on two nodes. With a higher replication factor,
the performance would fall even deeper, but I think that's a reasonable price for availability and
resilience. The performance can be improved by using tricks like non-volatile RAM or multiple
disks per node.

Usefulness
As I stated in the first paragraph, the two systems probably didn't have the same goal, but
nevertheless, I would prefer Porcupine as my distributed mail system. Mainly for the reason, that it
interoperates better with the existing infrastructure. (e)POST is rather designed to build a small
world by itself, and you have to have gateways to all the other mail users to which you may want to
send mail or from which you want to be able to receive mail.
This doesn't mean POST is useless. I just think ePOST is not the best case to use the POST system,
although you could use it as an internal mail system for a company. But I think its more convenient
for intra-company instant messaging, shared calendars for specific user groups or other applications
that don't need any gateway to outside the company. Instead of a company you could assume any
kind of closed community.

