On the Power Assignment Problem in Radio Networks

Luzius Meisser

Betreuung: Thomas Moscibroda

Content

Content

<- now

- Problem
- Paper, Results
- Trade-Off Hops vs. Power
- Complexity
- Conclusions

Content

- Content
- Problem
- Paper, Results
- Trade-Off Hops vs. Power
- Complexity
- Conclusions

Problem

N stations in mobile network, minimize power consumption while preserving connectivity with at most h hops.

 \rightarrow Min d-D h-Range Assignment

Problem

Definition:

- Nodes in d-dimensional space
- Power consumption = f(sending distance), $p = a^*(d^\beta)$
- Minimize Total Power Consumption
- Constraint: max h hops
- \rightarrow Min d-D h-Range Assignment

If $h = \infty$, Min d-D Range Assignment

Problem

Questions: What's the minimal total power consumption for a given h? What's the computational complexity of finding the optimal range assignment? Are there good approximations?

Content

- Content
- Problem
- Paper, Results

- Trade-Off Hops vs. Power
- Complexity
- Conclusions

Paper

"On the power assignment problem in radio networks"

Adrea E.F. Clementi Paolo Penna

Riccardo Silvestri

Clementi – Penna – Silvestri University of Rome - 2000

Result: Complexity

Paper says:

Problem version	Previous results	Our results
MIN 1D RANGE ASSIGNMENT	in P [16]	_
MIN 2D RANGE ASSIGNMENT	in APX [16]	NP-complete
MIN 2D <i>h</i> -RANGE ASSIGNMENT, well-spread	_	in APX
MIN 2D <i>h</i> -RANGE ASSIGNMENT	_	in Av-APX
MIN 3D RANGE ASSIGNMENT	NP-complete, in APX [16]	APX-complete

APX: Class of NP Problems that are approximable to a constant factor in polynomial time.

[details later]

$$\Theta(\delta(S)^2|S|^{1+1/h})$$

What does that mean?

Result: Hops vs. Power

 $\Theta(\delta(S)^2|S|^{1+1/h})$

S: Set of nodes h: maximal number of hops $\delta(S)$: minimal distance between two nodes

Content

- Content
- Problem
- Paper, Results
- Trade-Off Hops vs. Power ← now
- Complexity
- Conclusions

Hops vs. Power

Problem version	Previous results	Our results
MIN 1D RANGE ASSIGNMENT	in P [16]	_
MIN 2D RANGE ASSIGNMENT	in APX [16]	NP complete
MIN 2D <i>h</i> -RANGE ASSIGNMENT, well-spread	_	in APX
MIN 2D <i>h</i> -RANGE ASSIGNMENT	_	in Av-APX
MIN 3D RANGE ASSIGNMENT	NP-complete, in APX [16]	APX-complete

Hops vs. Power

We want to show: Optimal 2D h-Range Assignment is in

Hops vs. Power

Oh-Notation

- Lower bound: n^2 is in $\Omega(n)$
- Upper bound: 1 is in O(n)
- Optimum: n is in Θ(n) because n is in both, in Ω(n) and O(n)

Hops vs. Power

Power assignment algorithm:

Set h=2, n=256,

Side of square: I

Hops vs. Power

Power assignment algorithm:

Set h=2, n=256,

Side of square: I

Divide area into k^2 subsquares, with $k = n^{(1/2h)}$ $\rightarrow k = 4$

Hops vs. Power

Power assignment algorithm (centralized):

$$\rightarrow$$
 16 squares

Hops vs. Power

Power assignment algorithm (centralized):

h=2, n=256

Choose 1 station in each square and give it global transmission range.

Hops vs. Power

Power assignment algorithm (centralized):

Now recursively solve the problem in each subsquare with h decreased by 1.

Hops vs. Power

Power assignment algorithm (centralized):

Sub-Problem:

 \rightarrow all nodes get a range of l/k

→ cost of all subsquares: $k^{2*}(n/k^2)^*(l/k)^2 = n^*(l/k)^2$

Hops vs. Power

Power assignment algorithm (centralized):

→ All nodes are connected with at most 2 hops. Total Cost: $|^{2*k^2} + n^*(|/k)^2$ $= |^{2*}(n^{(1/2)}) + (n^{(1/2)})^*|^2$ $= 2^*|^2 * (n^{(1/2)})$ $\Theta(\delta(S)^2|S|^{1+1/h})$

Hops vs. Power

But what about this network?

Hops vs. Power

But what about this network?

→ cost is in $O(n^*(\delta(S)^*n)^2) = O(n^{3*} \delta(S)^2)$

$$\Theta(\delta(S)^2|S|^{1+1/h})$$

Hops vs. Power

But what about this network?

→ cost is in $O(n^*(\delta(S)^*n)^2) = O(n^{3*} \delta(S)^2)$

→ formula only holds for "well-spread" instances. $\Theta(\delta(S)^2|S|^{1+1/h})$

For well spread instances:
$$\Theta(\delta(S)^2|S|^{1+1/h})$$

For instances that are randomly distributed on a square:

$$\Theta(l^2n^{1/h})$$

[With high probability]

Content

- Content
- Problem
- Paper, Results
- Trade-Off Hops vs. Power

← now

- Complexity
- Conclusions

Intermezzo				
Paper says:	Flash	nback		
Problem version		Previous results	Our results	
MIN 1D RANGE ASSIGNMENT MIN 2D RANGE ASSIGNMENT MIN 2D <i>h</i> -Range Assignme MIN 2D <i>h</i> -Range Assignme MIN 2D <i>h</i> -Range Assignment	T NT, well-spread NT	in P [16] in APX [16] – – NP-complete, in APX [16]	– NP-complete in APX in Av-APX APX-complete	

APX: Class of NP Problems that are approximable to a constant factor in polynomial time.

[details later]

Intermezzo

Complexity Classes

Short overview over the classes P, NP, APX, as well as over the concepts of Hardness and Completeness.

Intermezzo

Complexity Classes

P: Class of Problems that can be solved in polynomial time.

Intermezzo

Complexity Classes

NP (or NPO): Class of Problems whose objective function can be calculated in polynomial time.

NP

Intermezzo

Complexity Classes

Example of an NP problem: Min Vertex Cover

Given a graph: Color the minimal number of vertices blue such that every edge is connected to a blue vertex.

cover

Intermezzo

Complexity Classes

APX: Class of NP Problems that are approximable to a constant factor in polynomial time.

APX

Examples: Min Vertex Cover restricted to cubic graphs, Travelling Salesman in Euclidean Space 38/73

Intermezzo

Complexity Classes

39/73

NP-Complete 40/73

Intermezzo Complexity Classes

Recipe to prove APX-Completeness of a problem A:

- show that A is in APX by giving an approximation algorithm
- show that A is APX-Hard by reducing it to another problem B that is known to be APX-Hard
- since A is in APX and APX-Hard, it follows that A is APX-Complete

(Replace "APX" by "NP" for NP-Completeness)

Intermezzo

Complexity Classes

Reducibility:

A is reducible to B if: given an polynomial time algorithm that solves instances of A, we can provide a polynomial time algorithm that solves instances of B.

Additional when reducing APX problems: Show that a constant approximation factor is preserved.

Content

- Content
- Problem
- Paper, Results
- Hop-Power Trade-Off
- Complexity of Min 3D RA ← now
- Conclusions

Complexity Proof

APX-Completeness of Min 3D RA

1. Step according to recipe:

Show that "Min 3D Range Assignment" is in APX.

Complexity Proof APX-Completeness of Min 3D RA

1. Step according to recipe:

Show that "Min 3D Range Assignment" is in APX.

This has already been done by Kirousis et al.

→ We believe them, so we can proceed to step 2, hehe. ☺

Complexity Proof

APX-Completeness of Min 3D RA

2. Step according to recipe:

Reduce "Min 3D Range Assignment" to a problem which is known to be APX-Hard.

We pick "Min Vertex Cover restricted to cubic graphs"

52/73

Complexity Proof

APX-Completeness of Min 3D RA

What would this graph look like when converted?

56/73

Complexity Proof APX-Completeness of Min 3D RA

Optimal Solution: Candidate A

Complexity Proof APX-Completeness of Min 3D RA

Optimal Solution: Candidate B

58/73

Complexity Proof

APX-Completeness of Min 3D RA

→ We have implicitly found the Min Vertex Cover by solving the Range Assignment Problem

Complexity Proof

APX-Completeness of Min 3D RA

After having converted the graph, can we garantuee that we are still only a constant factor away from the optimal solution?

 $solRA = solVC^*(\delta + \epsilon)^2 + m^*\epsilon^2 + n^*(\delta + \epsilon)^2$

→ changing apxRA by a constant factor also changes apxVC by a constant factor.

Complexity Proof Flashback

Previous results	Our results
in P [16]	_
in APX [16]	NP-complete
_	in APX
-	in Av-APX
NP-complete, in APX [16]	APX-complete
	in P [16] in APX [16] - - NP-complete, in APX [16]

Complexity Proof Flashback

Problem version	Previous results	Our results
MIN 1D RANGE ASSIGNMENT	in P [16]	_
MIN 2D RANGE ASSIGNMENT	in APX [16]	NP-complete
MIN 2D <i>h</i> -RANGE ASSIGNMENT, well-spread	_	in APX
MIN 2D h -Range Assignment	_	in Av-APX
MIN 3D RANGE ASSIGNMENT	NP-complete, in APX [16]	APX-complete

Same proof for Min 2D Range Assignment?

Complexity Proof Flashback

Problem version	Previous results	Our results
Min 1d Range Assignment Min 2d Range Assignment	in P [16] in APX [16]	_ NP-complete
MIN 2D <i>h</i> -RANGE ASSIGNMENT, well-spread	_	in APX
MIN 2D h -Range Assignment	-	in Av-APX
MIN 3D RANGE ASSIGNMENT	NP-complete, in APX [16]	APX-complete

Same proof for Min 2D Range Assignment?

-> only for NP-Completeness

Content

- Content
- Problem
- Paper, Results
- Hop-Power Trade-Off
- Complexity
- Conclusions

Conclusions

No "Min 2D h-Range Assignment" algorithm will ever consume less energy than O(n^(1+1/h))

Problem version	Previous results	Our results
MIN 1D RANGE ASSIGNMENT	in P [16]	_
MIN 2D RANGE ASSIGNMENT	in APX [16]	NP-complete
MIN 2D <i>h</i> -RANGE ASSIGNMENT, well-spread	_	in APX
MIN 2D h -Range Assignment	_	in Av-APX
MIN 3D RANGE ASSIGNMENT	NP-complete, in APX [16]	APX-complete

Conclusions

Relevance of paper: Superficial measurement: has been cited in 12 papers so far (all self-citations) -> low impact. But: We can now judge the quality of distributed algos better,

since we know the optimum.

Conclusions

My impression:
A provably wrong statement
A prove we did not understand
→ I do not entirely trust every detail in the paper (e.g. does it really work for all betas?)

Open Questions

- Is "Min 2D h-Range Assignment" APX-Complete?
- Distributed Algorithm?
- Not much known about "Min d-D h-Range Assignments" in general, even for the 1 dimensional case
 - (is it in P? in NP? In APX?)
- → maybe in newer papers of Clementi et al.
"On the power assignment problem in radio networks" - Luzius Meisser – Seminar of Distributed Computing WS04/05

Questions

Dru Destara, 1880. Bronze, Höbe 71,9 cm. Monée Rodin, Paris

73/73