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Part 1

Introduction
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Why Topology Control?
 maintain network connectivity

 every node can reach all others
 reduce energy consumption 
 sending over near neighbours is more efficient than sending 

directly to a far target
 do not send with maximal transmission power if not necessary

 improve network capacity
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Related Work
 based on centralised algorithms

 applicable for static networks
 need global information
 can achieve optimality

 based on unit disk graphs
 homogeneous wireless nodes with uniform transmission ranges
 every node sends with same transmission power

 based on fixed nodes
 once a node has been initialised, it does not change its position
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Why Heterogeneous Networks? (1)
 can easily add new devices without attention to the 

type of the device (mobility, dynamic)
 we can use devices with non-uniform transmission ranges

 in practice there are many influences which affect the 
range of a device
 obstacles like plants, walls, ... or other radio frequencies
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Why Heterogeneous Networks? (2)
 there exist heterogeneous networks in which devices 

have dramatically different capabilities
 Military: devices on soldiers vs. devices on vehicles

 even devices of the same type may have slightly 
different maximal transmission power
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What we want
 each wireless node should locally

 adjust its transmission power
 select with which neighbours to communicate

 model should deal with dynamic changes in topology
 addition of new nodes
 removal or drop out of links (or nodes)
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Simple adaptation doesn't work (1)
 can't guarantee network connectivity in 

heterogeneous case
 no global information
 assumptions about transmission power of counterparts don't hold 

anymore

 message overhead
 energy

 unbounded out-degree
 increase signal interference & overhead at a node
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Simple adaptation doesn't work (2)
 a RNG structure in a homogeneous graph is 

connected since all links would be bi-directional
 edge (v3,v8) is discarded since v7 lies in the shaded 

area between v3 and v8



Part 2

General Graphs
&

Mutual Inclusion Graphs



13

G: (General Graph)

 a node u connects to another node v iff the Euclidean 
distance between these two nodes is smaller than 
the transmission range of u

 this model has uni- and bi-directional connections
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Reachable Neighbourhood (1)
 in DRNG and DLMST each node has to know its 

reachable neighbourhood
 set of nodes that a specific node can reach using its maximal 

transmission power (eg. for v1 we get v2 and v4)
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Reachable Neighbourhood (2)
 finding this reachable neighbourhood is difficult since 

v4 can't reach v1
 unfortunately it is not described in the paper how they will manage 

this in the General Graph
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Directed RNG (Relative Neighbourhood Graph)

 Algorithm:
 collect reachable neighbourhood
 build topology by selecting those nodes from the reachable 

neighbourhood for which there does not exist a node p that is 
closer to u and v than u to v and p can reach v.
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Directed Local MST (Minimum Spanning Tree)

 Algorithm:
 collect reachable neighbourhood
 build topology computing a directed MST for each node that spans 

the reachable neighbourhood of this node and takes on-tree nodes 
that are one hop away as its neighbours.
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MG: (Mutual Inclusion Graph)

 two nodes are connected iff they are within the 
maximum transmission range of each other

 there are only bi-directional links
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Planar Topology
 for any topology control method it is not always 

possible to create a planar topology while keeping 
the communication graph connected
 u is out of the transmission range of x and y, while v is in the 

transmission range of y and out of the range of x
 according to MG, there are only xy, vy and uv in the graph
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Sparse Structure
 based on RNG they found an extension that has 

bounded number of links → sparse structure
 unfortunately that's not what we want
 we are looking for bounded out-degree
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Idea of Spanners
 Given a graph G and a subgraph H of G.
 H is a t-Length Spanner of G if for any two nodes  

u,v  V(H) the shortest path between u and v is at 
most a constant factor t longer than the shortest 
path of these two nodes in G.

 if the weighting function is not the length but the 
power than we have with the same argumentation a 
Power Spanner instead of a Length Spanner
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Power Spanner
 based on GG (Gabriel Graph) they found a graph 

which contains the minimum power consumption 
path for any two nodes in MG 

 we are still looking for bounded out degree
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Degree-Bounded Spanner (1)
 based on Yao Graph
 at each node u, partition space into k equal 

subspaces (= cones) and connect to the nearest 
node in each cone if there is any
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Degree-Bounded Spanner (2)
 in a MG model simply selecting the closest incoming 

neighbour does not guarantee connectivity
 v, w are in same cone of u ; x , u are in same cone of v 
 node u keeps link uw and node w keeps link uw
 node v keeps link vx and node x keeps link xv.
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Novel Space Partition
 partition space into k equal subspaces (= cones)
 divide each cone into constant number of subsets 

and connect v to the nearest node w in each subset
 the algorithm guarantees that all nodes in a subset 

are connected to node w in this subset

v

w
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EYGk(MG): (Extended Yao Graph)

 has bounded out-degree in O(log2 q)
 is a Length- and a Power-Spanner to MG
 is connected if MG is connected
 is bi-directional
 they reach almost optimum since any connected 

graph will have degree at least O(log2 q)
 q = maxv,w rv/rw with v  V(MG) and wv  EYGk(MG)



Part 3

Proof
&

Conclusions
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Proof for connectivity in GDLMST (1)

 Lemma 1:
For any edge (u, v) which is only in G but not in GDLMST, there must be a 
unique path on Tu from u to v in GDLMST. Let p be the last node on this 
path before v than we have w(p, v) < w(u, v).

w(u, v): gives any edge in a graph a unique weight
Tu: local MST rooted at node u containing all reachable nodes of u

G: General Graph
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Proof for connectivity in GDLMST (2)

 Proof (by contradiction):

Suppose w(p, v) > w(u, v), we can construct another directed 
spanning tree T'u rooted at u with lower weight, by replacing edge (p, 
v) with (u, v) and keeping all the other edges in Tu unchanged. This 
contradicts the assumption that Tu is the local directed MST.

u
p

v
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Proof for connectivity in GDLMST (1)

 Lemma 2:
Let T be the global directed MST of G rooted at any node w  V (G), 
than E(T)  E(GDLMST ).

 Proof (by contradiction):
For any edge (u, v)  E(T) suppose (u, v)  E(GDLMST). Since v is on the 
directed local MST Tu , there exists a unique path from u to v with p as 
the last node on this path before v.

We have w(p, v) < w(u, v) by Lemma 1. By replacing edge (u, 
v) with (p, v) and keeping all the other edges in T unchanged, 
we can construct another global directed spanning tree T rooted 
at w that has lower weight than T. This contradicts the 
assumption that T is the global MST rooted at w.
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Proof for connectivity in GDLMST (4)

 Theorem 1 (Connectivity of GDLMST): 
If G is strongly connected, than GDLMST is also strongly connected.

 Proof (by contradiction):
For any two nodes u, v  V (G), there exists a unique global MST T 

rooted at u since G is strongly connected. Since E(T)  E(GDLMST ) by 
Lemma 2, there is a path from u to v in GDLMST.
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Conclusions: Paper 1 (1)
 for a General Graph there are two localized topology 

control algorithms, DLMST and DRNG, which 
preserve connectivity

 DLMST and DRNG preserve bi-directionality if they 
are based on a Mutual Inclusion Graph and Addition 
& Remove operations are applied
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Conclusions: Paper 1 (2)
 DLMST has a bounded out-degree while DRNG may 

be unbounded
 there is no description of how exactly they find the 

reachable neighbourhood
 it is more like a theoretical and mathematical work showing the 

general possibility for building such topologies based on a General 
Graph
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Conclusions: Paper 2

 EYGk(MG) has a stricter bound on the out-degree 
than DLMST and guarantees better characteristics

 Length- and Power-Spanner to MG
 they reach almost optimum since any connected 

graph will have degree at least O(log2 q)



Questions?


