Energy efficient MAC protocols for Wireless Sensor Networks

Andri Toggenburger tandri@student.ethz.ch

14.12.2004

Overview

- Introduction to Sensor Networks
- "A Distributed TDMA Slot Assignment Algorithm for Wireless Sensor Networks"
 - Goals
 - Model
 - Algorithm
- Conclusion

Wireless Sensor Networks: The Beginnings

- DSN (Distributes Sensor Network) project of DARPA, 1985
- Acoustic sensors
- Includes quiet diesel generator (power for days)
- 4 computers to process data (256 KB RAM)
- No dynamic topology

Mobile Node

Equipment Rack

Wireless Sensor Networks: Today

- Intel Mote prototype
- Includes antenna for Bluetooth
- 12 Mhz processor
- Operation time: up to several months with AA Batteries (larger than sensor itself)
- Ad-hoc networking

Wireless Sensor Networks: Future?

- "Smart Dust"
- Size: like a grain of sand
- Solar powered
- Ad-hoc, P2P
- 1000's of nodes
- Price: below 1\$

Wireless Sensor Networks: Technical Problems

- Limited hardware resources
 - Computing power
 - Memory
 - Communication power
 - Power supply
- Ad-hoc networking: node failure, dynamic topology, Media Access Control (MAC)

A Distributed TDMA Slot Assignment Algorithm for Wireless Sensor Networks

Ted Hermann and Sébastien Tixeuil

ALGOSENSORS 2004

Goal

MAC protocol which has the following properties:

- Distributed computation
- Self-stabilizing
- Expected local convergence in time O(1)
- Fairness among nodes
- Energy conservation

Why TDMA?

- Fairness
- No collisions
- Scheduled slots
 - Nodes can turn off their power

But recent work shows:

 TDMA may not improve bandwith compared to other MAC protocols.

Graph Coloring and TDMA slot assignment

Distance-two coloring:

- No nodes within distance two have same color
- Can be used to assign time slots
- Different solutions possible:

Graph Coloring and TDMA slot assignment

Distance-one coloring:

 does not work because of the "Hidden Terminal Problem"

Wireless Network Model

- Synchronized clocks
- All nodes use the same frequency
- Node density is upper-bounded
- Infinite repetition of the algorithm at each node
- Shared variables among nodes, updated by messages.
- CSMA / CA slot for reservation of TDMA slots

Wireless Network Model

Illustration of a schedule

Final result schedule should look like this:

5 Algorithms to accomplish TDMA

- 1. Neighborhood identification
- 2. Neighborhood-unique naming
- 3. Leaders via maximal independent set
- 4. Leader assigned minimal coloring
- 5. Assignments of time slots from colors

Goal: Learning of
$$N^2$$
 and N^3 p

- Shared List L with pairs (a:A), where a is an id and A is a list of id's.
 (A = list of nodes known by a)
- List L_p: L augmented by an age value for each element
- MaxAge: maximum age of a list entry

- N0: receive mN(a,A) ⇒ update(L_p,a:A\{p})
- N1: drop old entries in L_D
- N2: send mN(p,neighbors(L_p))

Neighborhood identification

A simple example:

Neighborhood identification

After round 1:

Neighborhood identification

After round 2:

Goal: Each node in
$$N\frac{3}{p}$$
 has unique id

- Smaller and constant name space (as compared to physical addresses)
- Provides (no good) solution for graph coloring

- Namespace: $\Delta = \varrho^t$, t > 3
- Every node stores set of latest known ids of all neighbors (ϱ^3 entries)
- Node keeps id if no other node has the same id
- Node changes id to random id if other node has same id

• A simple example, $\Delta = 16$, $\varrho = 2$, t = 4

• After round 1:

After round 2:

• After round 3:

- And so on...
- Once the name of a node is established (=unique) in all 3-neighborhoods a node is part of, it stays fixed!
- Algorithm self-stabilizes with probability 1 and has constant expected local convergence time
 - What about propagation of name changes through the whole network?

Leaders via Maximal Independent Set

- Simple distance-two coloring algorithms use too many colors, so leaders dictate color of nearby nodes.
- A Maximal Independent Set of the graph gives the leaders.

 An independent set / of a graph G is a set of nodes such that no two nodes in / are neighbors.

Leaders via Maximal Independent Set

Algorithm for a node p:

(Flag Lp: leader flag of node p)

- Set *Lp* to true if all neighbors have larger id.
- If there is a neighbor which is leader and has smaller *id*, set *Lp* to false.
- If all neighbors with smaller id have their leader flag cleared, set Lp to true.

Solution converges to a maximal independent set.

Leaders via Maximal Independent Set

An example graph with marked leaders

- Leaders assign colors to their neighbors and themselves.
- Each leader has list of preferred colors for each node in its neighborhood (shared variable).
- A node chooses a color in the cached color list of the leader with the smallest id in its neighborhood.
- Leader chooses color for a node from colors which haven't already been assigned by leaders with smaller id's somewhere in 2-neighborhood.
 - every non-leader stores colors of its neighbors and leader id which assigned them in a shared variable

Leader assigned coloring

Leader assigned coloring

Example Coloring which needs 5 colors from c0 to c4

- Actual number of colors used is not available in a global variable
- Each node should have about as much bandwith as any other node in 2-neighborhood → fairness
- Allocate slots to nodes beginning with the most constrained to the least constrained in order not to waste bandwith

Assigning Time Slots from Colors

2-neighborhood:	3	4	4	3
Max. Bandwith:	1/3	1/4	1/4	1/3
Assignment in correct order:	[2/3,1]	[0,1/4]	[1/4,1/2]	[2/3,1]
Assignment in wrong order:	[0,1/3]	[1/3,1/2]	[1/2,2/3]	[2/3,1]

Algorithm (iterative)

- Count number of colors in 2-neighborhood and store it in "base" (gives upper bound on available time)
- Learn about time intervals chosen by nodes in 2neighborhood which have larger "base"
- Choose as much time intervals which haven't already been assigned to reach maximum "1/base"

Conclusion

- 5 algorithms running in combination
- Probalistically self-stabilizing solution to the problem
- O(1) local convergence time for every algorithm and consequently whole process in expectation
- Global convergence time? Suspected to be sublinear

Conclusion

- Relies on synchronized clocks
- How to decide on the length of the CSMA / CA slot?
 - And: percentual size of the CSMA / CA slot?
- Algorithm assumes bidirectional communication
- Simulation would be nice:
 - Length of CSMA / CA slot could be ascerted.
 - No statements about actual amount of energy which is saved

Thank you for your attention

Please feel free to ask question!