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Overview

Introduction to Sensor Networks
„A Distributed TDMA Slot Assignment Algorithm for 
Wireless Sensor Networks“ 

Goals
Model
Algorithm

Conclusion
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Wireless Sensor Networks: 
The Beginnings

DSN (Distributes Sensor 
Network) project of 
DARPA, 1985
Acoustic sensors
Includes quiet diesel 
generator (power for 
days)
4 computers to process 
data (256 KB RAM)
No dynamic topology
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Wireless Sensor Networks: 
Today

Intel Mote prototype
Includes antenna for 
Bluetooth
12 Mhz processor
Operation time: up to 
several months with 
AA Batteries (larger 
than sensor itself)
Ad-hoc networking
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Wireless Sensor Networks: 
Future?

„Smart Dust“
Size: like a grain of sand
Solar powered
Ad-hoc, P2P
1000's of nodes
Price: below 1$
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Wireless Sensor Networks:
Technical Problems

Limited hardware resources
Computing power
Memory
Communication power
Power supply

Ad-hoc networking: node failure, dynamic 
topology, Media Access Control (MAC)
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A Distributed TDMA Slot Assignment 
Algorithm for Wireless Sensor 

Networks

Ted Hermann and Sébastien Tixeuil
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Goal

MAC protocol which has the following properties:

Distributed computation
Self-stabilizing
Expected local convergence in time O(1)
Fairness among nodes
Energy conservation
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Why TDMA?

Fairness
No collisions
Scheduled slots

Nodes can turn off their power

But recent work shows:
TDMA may not improve bandwith compared 
to other MAC protocols.
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Graph Coloring and TDMA slot 
assignment

Distance-two coloring: 
No nodes within distance two have same   
color
Can be used to assign time slots
Different solutions possible:
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Graph Coloring and TDMA slot 
assignment

Distance-one coloring: 
does not work because of the „Hidden 
Terminal Problem“

Range of node

Collision!



  Page 12

Wireless Network Model

Synchronized clocks
All nodes use the same frequency
Node density is upper-bounded

Infinite repetition of the algorithm at each node
Shared variables among nodes, updated by 
messages.  
CSMA / CA slot for reservation of TDMA slots
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Wireless Network Model

Neighborhood of a node p at distance i:
 

p

N 3
p

N 2
p

N p

N i
p ∣N p∣ϱ
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Illustration of a schedule

Final result schedule should look like this:
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5 Algorithms to accomplish TDMA

1. Neighborhood identification

2. Neighborhood-unique naming

3. Leaders via maximal independent set
4. Leader assigned minimal coloring

5. Assignments of time slots from colors
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Neighborhood identification

Goal: Learning of           and

Shared List L with pairs (a:A), where a is an id and 
A is a list of id's.
(A = list of nodes known by a)
List L

p
: L augmented by an age value for each 

element
MaxAge: maximum age of a list entry

N 2
p

N 3
p
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Neighborhood identification

N0: receive mN(a,A) [ update(L
p
,a:A\{p})

N1: drop old entries in L
p

N2: send mN(p,neighbors(L
p
))
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Neighborhood identification

A simple example:

[x:X:0|x:X:0] [x:X:0|x:X:0]

[x:X:0|x:X:0]

5
6

7
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Neighborhood identification

After round 1:

[6:X:0|x:X:1] [5:X:0|7:X:0]

[6:X:0|x:X:1]

5
6

7

(5:X)

(7:X)
(6:X)

(6:X)
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Neighborhood identification

After round 2:

[6:[7]:0|x:X:2] [5:X:1|7:X:1]

[6:[5]:0|x:X:2]

5
6

7

(6,[5,7])(6,[5,7])
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Neighborhood-unique naming

Goal: Each node in         has unique id

Smaller and constant name space (as 
compared to physical addresses)

Provides (no good) solution for graph coloring

N 3
p
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Neighborhood-unique naming

Namespace:

Every node stores set of latest known ids of all 
neighbors (      entries)

Node keeps id if no other node has the same id

Node changes id to random id if other node has 
same id

=ϱt , t3

ϱ3
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Neighborhood-unique naming

A simple example, 

1, [-] 2, [-]

1, [-]

5
6

7

=16 ,ϱ=2 , t=4
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Neighborhood-unique naming

After round 1:

1, [(6,2)] 2, [-]

1, [(6,2)]

5
6

7

(6,2)

(6,2)
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Neighborhood-unique naming

After round 2:

1, [(6,2)] 2, [(5,1),(7,1)]

1, [(6,2)]

5
6

7

(5,1)

(7,1)
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Neighborhood-unique naming

After round 3:

9, [(6,2),(7,1)] 2, [(5,1),(7,1)]

1, [(6,2)]

5
6

7

(7,1)
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Neighborhood-unique naming

And so on...

Once the name of a node is established 
(=unique) in all 3-neighborhoods a node is part 
of, it stays fixed!

Algorithm self-stabilizes with probability 1 and 
has constant expected local convergence time

What about propagation of name changes through the 
whole network?
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Leaders via Maximal Independent 
Set

Simple distance-two coloring algorithms use 
too many colors, so leaders dictate color of 
nearby nodes.

A Maximal Independent Set of the graph gives 
the leaders.

An independent set I of a graph G is a set of 
nodes such that no two nodes in I are 
neighbors.
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Leaders via Maximal Independent 
Set

Algorithm for a node p:
(Flag Lp: leader flag of node p)

Set Lp to true if all neighbors have larger id.
If there is a neighbor which is leader and has 
smaller id, set Lp to false.
If all neighbors with smaller id have their leader 
flag cleared, set Lp to true.

Solution converges to a maximal independent set.
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Leaders via Maximal Independent 
Set

An example graph with marked leaders

5
6

13

4
8

2

7

9 8
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Leader assigned coloring

Leaders assign colors to their neighbors and 
themselves.
Each leader has list of preferred colors for each 
node in its neighborhood (shared variable).
A node chooses a color in the cached color list of 
the leader with the smallest id in its 
neighborhood.
Leader chooses color for a node from colors 
which haven't already been assigned by leaders 
with smaller id's somewhere in 2-neighborhood.

every non-leader stores colors of its neighbors and 
leader id which assigned them in a shared variable
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Leader assigned coloring

Example

5
6

13

4
8

2

7

9 8

5
6

13

4
8

2

7

9 8

Arrows: assignment of color 
from minimum leader to a 
neighbor
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Leader assigned coloring

Example Coloring which needs 5 colors from c0 to c4

c0

5
6

13

4
8

2

7

9 8

5
6

13

4
8

2

7

9 8

c0c1

c2

c2

c1

c3

c4

c1

c0
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Assigning Time Slots from Colors

Actual number of colors used is not available in a 
global variable

Each node should have about as much bandwith 
as any other node in 2-neighborhood → fairness

Allocate slots to nodes beginning with the most 
constrained to the least constrained in order not to 
waste bandwith
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Assigning Time Slots from Colors

34432-neighborhood:

Max. Bandwith: 1/3 1/4 1/4 1/3

Assignment in 
correct order:

Assignment in 
wrong order:

[2/3,1] [2/3,1][0,1/4] [1/4,1/2]

[0,1/3] [2/3,1][1/3,1/2] [1/2,2/3]
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Assigning Time Slots from Colors

Algorithm (iterative)

Count number of colors in 2-neighborhood and 
store it in „base“ (gives upper bound on available 
time)
Learn about time intervals chosen by nodes in 2-
neighborhood which have larger „base“
Choose as much time intervals which haven't 
already been assigned to reach maximum „1/base“
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5 algorithms running in combination

Probalistically self-stabilizing solution to the problem

O(1) local convergence time for every algorithm and 
consequently whole process in expectation

Global convergence time? Suspected to be sublinear

Conclusion
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Relies on synchronized clocks

How to decide on the length of the CSMA / CA slot?
And: percentual size of the CSMA / CA slot?

Algorithm assumes bidirectional communication

Simulation would be nice:
Length of CSMA / CA slot could be ascerted.
No statements about actual amount of energy which is saved

Conclusion
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Thank you for your attention

Please feel free to ask question!


