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Discrete Event Systems

Exercise 3: Sample Solution1

1 Regular Languages and Finite Automaton

(i) We could use the systematic transformation scheme presented in the lecture (slide 1/75).
Considering the large number of states, however, this will easily lead to an explosion of states
in the derandomized automaton.

Hence, we build the deterministic finite automaton in a step-wise manner, only creating
those states that are actually required:

Initially, the automaton requires a 0. Subsequently, only a 1 is accepted. Including the
various ε transitions, this 1 can lead to three different states, namely states 2, 3, and 4.

{2,3,4}{1}
0 1

{2,4}

In any of the states 2, 3, and 4, only a 1 is accepted. Assume that the automaton is
currently in state 2, this 1 can lead to states {2, 3, 4} when including all ε transitions. When
in state 3, the 1 leads to states {3, 5} and finally, when being in state 4, the reachable states
given a 1 are {2, 3, 4}. Hence, a 1 leads from state {2, 3, 4} to state {2, 3, 4, 5}. Repeating
the same process for state {2, 3, 4, 5}, we can see that, again, only a 1 is accepted, which
leads to state {2, 3, 4, 5, 6}. Because the state 6 in the original NFA was an accepting state,
{2, 3, 4, 5, 6} is also accepting in the DFA. From state {2, 3, 4, 5, 6}, an additional 1 will lead
to another accepting state {1, 2, 3, 4, 5, 6}. And from this state, any subsequent 1 returns to
state {1, 2, 3, 4, 5, 6} as well.
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What happens if a 0 occurs in the input. This is feasible only when the deterministic state
includes either state 1 or state 6. In state {2, 3, 4, 5, 6}, a 0 necessarily leads to state {4},
whereas in state {1, 2, 3, 4, 5, 6} a 0 leads to state {2, 4}. In both of these states, the only
acceptable input symbol is a 1 and leads to the state {2, 3, 4}. Hence, the deterministic finite
automaton looks like this:

1Note that in the exam, we do not expect the answers to be as detailed and verbose as in this solution.



{2,3,4}{1}
0 1 1

{2,3,4,5}

1

{2,3,4,
5,6}

1

{1,2,3,
4,5,6} 1

0
{4}

1

0

{2,4}

It can easily be seen, however, that the states {4}, {2, 4} and {2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}
can be merged and hence, the automaton can be reduced to the one shown in the next
Figure.
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(ii) By studying the above automaton, it can be seen that the following regular language is
accepted:

01111∗(01111∗)∗.

2 Non-Regular Languages

(i) Language L1 can be shown to be non-regular using the pumping lemma.

Assume for contradiction that L1 is regular and let p be the corresponding pumping length.
Choose s to be the string 0110p1p. Because s is a member of L1 and has length more than p,
the pumping lemma guarantees that s can be split into three parts, s = xyz, where |xy| ≤ p
and for any i ≥ 0 the string xyiz is in L1.

In order to obtain the contradiction, we must prove that for every possible splitting into
three parts s = xyz where |xy| ≤ p, the string s cannot be pumped. We therefore consider
the various cases.

• If y consists of only the initial 0, only the initial 1, or a combination thereof, the string
cannot be pumped without violating either the constraints a = 1 or b = 2.

• Assume that y consists of only 0’s from the second block. In this case, the string yyz
has more 0’s than 1’s and hence c 6= d.

• If y is of the form 10∗, the string xyyz cannot be in L1 anymore, either.

(ii) With the adapted language L2, the proof of non-regularity is much more tricky! Specifically,
non-regularity of L2 cannot be proven using the pumping lemma, because any string in L2

can actually be pumped! Consider for instance a string s of the form 0110p1p. In this case,
we can split s into the three parts x = 0, y = 11, z=0p1p, which is in accordance with the
rules of the pumping lemma. It can be seen, however, that any string xyiz is also in L2!
That is, the language L2 can be pumped and yet, it is not regular as shown below.

Assume for contradiction that there exists a finite automaton A which accepts the language
L2. Every string that starts with the input-sequence 0110 is only accepted if the remainder
of the string has the form 0c−1dc for some integer c > 0. Let s1 be the state reached after
the input 0110. Given the automaton A, we can construct a regular automaton A′ that is
equivalent to A with the only difference that its initial state is s1. By the definition of A,
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this adapted finite automaton A′ accepts all strings of the form 0c−1dc. However, as shown
on slide 1/95 of the script, the language 0c−1dc is not regular. Hence, A′ and thus A cannot
be finite automata. Because there exists a finite automaton for every regular language, it
follows that L2 cannot be regular.

Language L2 shows that while every regular language can be pumped according to the
pumping lemma, there are also non-regular languages that can be pumped.

3 Adapting a Finite Automaton

(i) The regular expression can be obtained from the finite automaton using the transformation
presented in the script on slide 1/85. After ripping out state 2, the corresponding GNFA
looks like this:

1
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After also removing state 3, the GNFA looks as follows.
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ε
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Finally, eliminating the last state 1 yields the final solution, which is

(01∗0)∗1(0 ∪ 11∗0(01∗0)∗1)∗.

(ii) The best way to solve this problem is to ask, which strings are actually not in Φ(L). The
string 1, for instance must be in Φ(L), because the string 10 is in L. Moreover, the string
11 is in Φ(L), because 1101 is in L. Also, 10, 01, and 00 are in Φ(L) because of the strings
1000, 0101, and 0010, respectively. More generally, it can be seen from every state in the
automaton and for all k ≥ 2, there is a sequence of k symbols that lead to the accepting
state. Hence, all strings of length at least 2 are in Φ(L). Also, as seen before, the string 1
is in Φ(L). The only string that is not in Φ(L) is therefore 0, because there is no string of
length 2 starting with 0 that leads to an accepting state.

With this, constructing the resulting DFA is now easy.
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