Chapter 12 POSITIONING Mobile Computing Winter 2005 / 2006	 Motivation Measurements Anchors Virtual Coordinates Heuristics Practice 		
	Distributed Computing Group <i>MOBILE COMPUTING</i> R. Wattenhofer 12/2		
	Measurements		
 Why positioning? Sensor nodes without position information is often meaningless Heavy and/or costly positioning hardware Geo-routing 	 Distance estimation Received Signal Strength Indicator (RSSI) The further away, the weaker the received signal. Mainly used for RF signals. Time of Arrival (ToA) or Time Difference of Arrival (TDoA) Signal propagation time translates to distance. RF, acoustic, infrared and ultrasound. 		
 Why not GPS (or Galileo)? Heavy, large, and expensive (as of yet) Battery drain Not indoors Accuracy? 	 Angle estimation Angle of Arrival (AoA) Determining the direction of propagation of a radio-frequency wave incident on an antenna array. 		
Solution: equip small fraction with GPS (anchors) Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 12/3	Directional Antenna Special hardware, e.g., laser transmitter and receivers. Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 12/4		

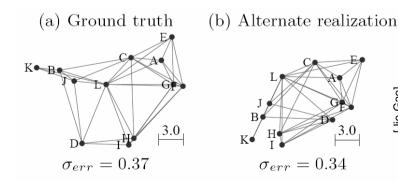
Positioning (a.k.a. Localization)

- Task: Given distance or angle measurements or mere connectivity information, find the locations of the sensors.
- Anchor-based
 - Some nodes know their locations, either by a GPS or as pre-specified.
- Anchor-free
 - Relative location only. Sometimes called virtual coordinates.
 - Theoretically cleaner model (less parameters, such as anchor density)
- Range-based ٠
 - Use range information (distance estimation).
- Range-free
 - No distance estimation, use connectivity information such as hop count.
 - It was shown that bad measurements don't help a lot anyway.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Ambiguity Problems

Same distances, different realization.



Trilateration and Triangulation

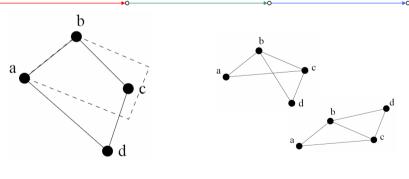
- Use geometry, measure the distances/angles to three anchors.
- Trilateration: use distances Global Positioning System (GPS)
- Triangulation: use angles - Some cell phone systems
- How to deal with inaccurate • measurements?
 - Least squares type of approach
 - What about strictly more than 3 (inaccurate) measurements?

12/5

[Jie Gao]

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Continuous deformation, flips, etc.



[Jie Gao]

12/6

Rigidity theory: Given a set of rigid bars connected by hinges, • rigidity theory studies whether you can move them continuously.

Simple hop-based algorithms

- Algorithm
 - Get graph distance h to anchor(s)
 - Intersect circles around anchors
 - radius = distance to anchor
 - Choose point such that maximum error is minimal
 - Find enclosing circle (ball) of minimal radius
 - Center is calculated location
- In higher dimensions: $1 < d \le h$
 - Rule of thumb: Sparse graph
 → bad performance

12/9

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Virtual Coordinates

Idea:

Close-by nodes have similar coordinates Distant nodes have very different coordinates

→ Similar coordinates imply physical proximity!

- Applications
 - Geometric Routing
 - Locality-sensitive queries
 - Obtaining meta information on the network
 - Anycast services ("Which of the service nodes is closest to me?")
 - Outside the sensor network domain: e.g., Internet mapping

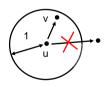
How about no anchors at all ...?

- In absence of anchors...
 - \rightarrow ...nodes are clueless about real coordinates.
- For many applications, real coordinates are not necessary
 - → Virtual coordinates are sufficient
 - → Geometric Routing requires only virtual coordinates
 - Require no routing tables
 - Resource-frugal and scalable

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Model

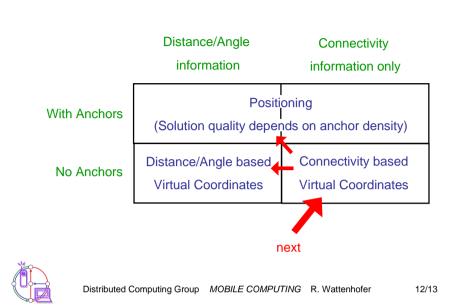
- Unit Disk Graph (UDG) to model wireless multi-hop network
 - Two nodes can communicate iff Euclidean distance is at most 1



12/10

- Sensor nodes may not be capable of
 - Sensing directions to neighbors
 - Measuring distances to neighbors
- Goal: Derive topologically correct coordinate information from connectivity information only.
 - Even the simplest nodes can derive connectivity information

Context



UDG Approximation – Quality of Embedding

- Finding an exact realization of a UDG is NP-hard.
 → Find an embedding r(G) which approximates a realization.
- Particularly,

→ Map adjacent vertices (edges) to points which are close together. → Map non-adjacent vertices ("non-edges") to far apart points.

• Define quality of embedding q(r(G)) as:

Ratio between longest edge to shortest non-edge in the embedding.

Let $\rho(u,v)$ be the distance between points u and v in the embedding.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

q(r(G)) :=

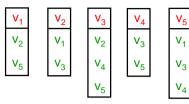
 $\max_{\{u,v\}\in E} \rho(u,v)$

 $\min_{\{u',v'\}\notin E}\rho(u',v')$

12/15

Virtual Coordinates +---> UDG Embedding

• Given the connectivity information for each node...



...and knowing the underlying graph is a UDG...

 …find a UDG embedding in the plane such that all connectivity requirements are fulfilled! (→ Find a realization of a UDG) //

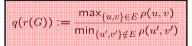
> This problem is NP-hard! (Simple reduction to *UDG-recognition* problem, which is NP-hard) [Breu, Kirkpatrick, Comp.Geom.Theory 1998]

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

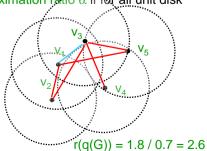
V1 V2 V5 V5 V4 V3 R. Wattenhofer 12/14

UDG Approximation

 For each UDG G, there exists an embedding r(G), such that, q(r(G)) ≤ 1. (a realization of G)



- Finding such an embedding is NP-hard
- An algorithm ALG achieves approximation ratio α if for all unit disk graphs G, $q(r_{ALG}(G)) \le \alpha$.
- Example:



12/16

Some Results

- There are a few virtual coordinates algorithms
 All of them evaluated only by simulation on random graphs
- In fact there is only one provable approximation algorithm

There is an algorithm which achieves an approximation ratio of $O(\log^{2.5} n \sqrt{\log \log n})$, n being the number of nodes in G.

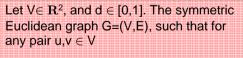
• Plus there are lower bounds on the approximability.

There is no algorithm with approximation ratio better than $\sqrt{3/2} - \epsilon$, unless P=NP.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Lower Bound: Quasi Unit Disk Graph

• Definition Quasi Unit Disk Graph:



- dist(u,v) $\leq d \Rightarrow \{u,v\} \in E$
- dist(u,v) > 1 \Rightarrow {u,v} \notin E

is called d-quasi unit disk graph.



12/17

• Note that between d and 1, the existence of an edge is unspecified.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 12/19

Approximation Algorithm: Overview

o		▶ 0	►O	→ 0
•	Four major steps		UDG Graph G with MIS M.	
	1.	Compute metric on MIS of input graph → Spreading constraints (Key conceptual difference to previous approaches!)	between nodes	nirwise distances s such that, MIS atly spread out.
	2.	Volume-respecting, high dimensional embedding	Volume respectin nodes in \mathbb{R}^n with	• •
	3.	Random projection to 2D	Nodes spread ou	t fairly well in R^2 .
_	4.	Final embedding	↓ Final e <i>mbeddi</i>	ing of G in R^2 .
	L.	Distributed Computing Group MOBILE	COMPUTING R. Watte	enhofer 12/18

Reduction

- We want to show that finding an embedding with $q(r(G)) \le \sqrt{3/2} \epsilon$, where ϵ goes to 0 for n $\rightarrow \infty$ is NP-hard.
- We prove an equivalent statement:

Given a unit disk graph G=(V,E), it is NPhard to find a realization of G as a d-quasi unit disk graph with $d \ge \sqrt{2/3} + \epsilon$, where ϵ tends to 0 for $n \rightarrow \infty$.

- → Even when allowing non-edges to be smaller than 1, embedding a unit disk graph remains NP-hard!
- → It follows that finding an approximation ratio better than $\sqrt{3/2} \epsilon$ is also NP-hard.

Reduction

- Reduction from 3-SAT (each variable appears in at most 3 clauses)
- Given a instance C of this 3-SAT, we give a polynomial time construction of $G_C = (V_C, E_C)$ such that the following holds:

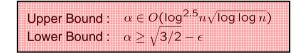
```
\begin{array}{ll} - \mbox{ C is satisfiable } \Rightarrow \mbox{ G}_{\mbox{C}} \mbox{ is realizable as a unit disk graph } \\ - \mbox{ C is not satisfiable } \Rightarrow \mbox{ G}_{\mbox{C}} \mbox{ is not realizable as a d-quasi unit disk } \\ \mbox{ graph with } d \geq \sqrt{2/3} + \epsilon \end{array}
```

• Unless P=NP, there is no approximation algorithm with approximation ratio better than $\sqrt{3/2} - \epsilon$.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Summary

- Virtual coordinates problem is important!
- Natural formulation as unit disk graph embedding.
 → Clear-cut optimization problem.



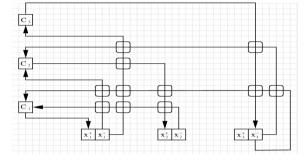
 \rightarrow Gap between upper and lower bound is huge!

Open Problems:

- Diminish gap between upper and lower bound
- Distributed Algorithm

Proof idea

- Construct a grid drawing of the SAT instance.
- Grid drawing is *orientable* iff SAT instance is satisfiable.
- Grid components (clauses, literals, wires, crossings,...) are composed of nodes → Graph G_C.
- G_{c} is realizable as a d-quasi unit disk graph with $d \ge \sqrt{2/3} + \epsilon$ iff grid drawing is orientable.



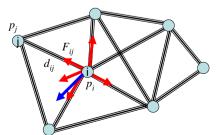
12/21

12/23

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 12/22

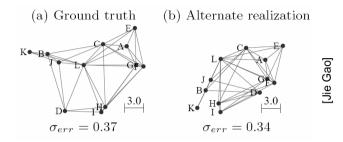
Heuristics: Spring embedder

- Nodes are "masses", edges are "springs".
- Length of the spring equals the distance measurement.
- Springs put forces to the nodes, nodes move, until stabilization.
- Force: $F_{ij} = d_{ij} r_{ij}$, along the direction $p_i p_j$.
- Total force on n_i : $F_i = \Sigma F_{ij}$.
- Move the node n_i by a small distance (proportional to F_i).



Spring Embedder Discussion

- Problems:
 - may deadlock in local minimum
 - may never converge/stabilize (e.g. just two nodes)
- Solution: Need to start from a reasonably good initial estimation.



Phase 1: compute initial layout

- determine periphery nodes u_N, u_S, u_W, u_F
- determine central node u_C
- use polar coordinates

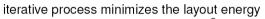
$$\rho_{\mathbf{v}} = d(\mathbf{v}, u_{C}) \quad \theta_{\mathbf{v}} = \arctan\left(\frac{d(\mathbf{v}, u_{N}) - d(\mathbf{v}, u_{S})}{d(\mathbf{v}, u_{W}) - d(\mathbf{v}, u_{E})}\right)$$

as positions of node v

Phase 2: Spring Embedder

Heuristics: Privantha et al.

N.B. Privantha, H. Balakrishnan, E. Demaine, S. Teller: **Anchor-Free Distributed Localization** in Sensor Networks, SenSys, 2003.



$${oldsymbol E}({oldsymbol p}) = \sum_{\{i,j\}\in E} \left(||{oldsymbol p}_i - {oldsymbol p}_j|| - \ell_{ij}
ight)^2$$

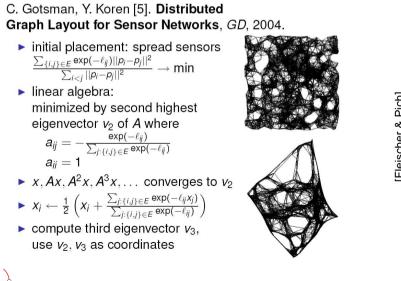
- ► fact: layouts can have *foldovers* without violating the distance constraints
- problem: optimization can converge to such a local optimum
- solution: find a good initial layout fold-free \rightarrow already close to the global optimum (="real layout")

12/25

[Fleischer & Pich]

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Heuristics: Gotsman et al.



Fleischer & Pich]

Fleischer & Pich]

12/26

Continued

