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Motivation

• Why positioning?
– Sensor nodes without position information is often meaningless
– Heavy and/or costly positioning hardware

– Geo-routing

• Why not GPS (or Galileo)?
– Heavy, large, and expensive (as of yet)

– Battery drain
– Not indoors

– Accuracy?

• Solution: equip small fraction with GPS (anchors)

A
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Measurements

Distance estimation
• Received Signal Strength Indicator (RSSI)

– The further away, the weaker the received signal.

– Mainly used for RF signals.

• Time of Arrival (ToA) or Time Difference of Arrival (TDoA)
– Signal propagation time translates to distance.

– RF, acoustic, infrared and ultrasound.

Angle estimation
• Angle of Arrival (AoA)

– Determining the direction of propagation of a radio-frequency wave 
incident on an antenna array.

• Directional Antenna
• Special hardware, e.g., laser transmitter and receivers.
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Positioning (a.k.a. Localization)

• Task: Given distance or angle measurements or mere connectivity 
information, find the locations of the sensors.

• Anchor-based
– Some nodes know their locations, either by a GPS or as pre-specified.

• Anchor-free
– Relative location only. Sometimes called virtual coordinates.

– Theoretically cleaner model (less parameters, such as anchor density)

• Range-based
– Use range information (distance estimation).

• Range-free
– No distance estimation, use connectivity information such as hop count.
– It was shown that bad measurements don’t help a lot anyway.
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Trilateration and Triangulation

• Use geometry, measure the distances/angles to three anchors. 

• Trilateration: use distances
– Global Positioning System (GPS)

• Triangulation: use angles 
– Some cell phone systems

• How to deal with inaccurate 
measurements?
– Least squares type of approach

– What about strictly more than 
3 (inaccurate) measurements?
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Ambiguity Problems

• Same distances, different realization.
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Continuous deformation, flips, etc.

[Jie Gao]

• Rigidity theory: Given a set of rigid bars connected by hinges, 
rigidity theory studies whether you can move them continuously.
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Simple hop-based algorithms

• Algorithm

– Get graph distance h to anchor(s)

– Intersect circles around anchors 

• radius = distance to anchor

– Choose point such that maximum error is minimal

• Find enclosing circle (ball) of minimal radius

• Center is calculated location

• In higher dimensions: 1 < d � h

– Rule of thumb: Sparse graph
� bad performance
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How about no anchors at all...?

• In absence of anchors...
� ...nodes are clueless about real coordinates.

• For many applications, real coordinates are not necessary
� Virtual coordinates are sufficient
� Geometric Routing requires only virtual coordinates

• Require no routing tables

• Resource-frugal and scalable

s

d
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Virtual Coordinates

• Idea: 
Close-by nodes have similar coordinates
Distant nodes have very different coordinates

� Similar coordinates imply physical proximity!

• Applications
– Geometric Routing

– Locality-sensitive queries
– Obtaining meta information on the network

– Anycast services („Which of the service nodes is closest to me?“)

– Outside the sensor network domain: e.g., Internet mapping
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Model

• Unit Disk Graph (UDG) to model
wireless multi-hop network
– Two nodes can communicate iff

Euclidean distance is at most 1

• Sensor nodes may not be capable of
– Sensing directions to neighbors
– Measuring distances to neighbors

• Goal: Derive topologically correct coordinate information from
connectivity information only. 
– Even the simplest nodes can derive connectivity information
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Context

Distance/Angle

information

Connectivity

information only

With Anchors

No Anchors

Positioning

(Solution quality depends on anchor density)

Distance/Angle based

Virtual Coordinates

Connectivity based

Virtual Coordinates

next
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Virtual Coordinates UDG Embedding

• Given the connectivity information for each node...
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• ...find a UDG embedding in the plane 
such that all connectivity requirements are
fulfilled! (� Find a realization of a UDG)

This problem is NP-hard!

(Simple reduction to UDG-recognition

problem, which is NP-hard)

[Breu, Kirkpatrick, Comp.Geom.Theory 1998]

...and knowing the underlying
graph is a UDG...
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UDG Approximation – Quality of Embedding

• Finding an exact realization of a UDG is NP-hard.
� Find an embedding r(G) which approximates a realization.

• Particularly,
� Map adjacent vertices (edges) to points which are close together.
� Map non-adjacent vertices („non-edges“) to far apart points. 

• Define quality of embedding q(r(G)) as:

Ratio between longest edge to shortest non-edge in the
embedding.

Let ρ(u,v) be the
distance between
points u and v in the
embedding. 
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UDG Approximation

• For each UDG G, there exists
an embedding r(G), such 
that, q(r(G)) � 1. 

(a realization of G)

• Finding such an embedding is NP-hard

• An algorithm ALG achieves approximation ratio α if for all unit disk
graphs G, q(rALG(G))� α.

• Example:
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r(q(G)) = 1.8 / 0.7 = 2.6 



Distributed Computing Group    MOBILE COMPUTING R. Wattenhofer 12/17

There is an algorithm which achieves an approximation ratio of                                                       
, n being the number of nodes in G. 

Some Results

• There are a few virtual coordinates algorithms
All of them evaluated only by simulation on random graphs

• In fact there is only one provable approximation algorithm

• Plus there are lower bounds on the approximability. 

There is no algorithm with approximation

ratio better than , unless P=NP.
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Approximation Algorithm: Overview

• Four major steps

1. Compute metric on MIS of input
graph � Spreading constraints
(Key conceptual difference to 
previous approaches!)

2. Volume-respecting, high 
dimensional embedding

3. Random projection to 2D

4. Final embedding

UDG Graph G with MIS M.

Approximate pairwise distances
between nodes such that, MIS 
nodes are neatly spread out.

Volume respecting embedding of 
nodes in Rn with small distortion.

Nodes spread out fairly well in R2.

Final embedding of G in R2.
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Lower Bound: Quasi Unit Disk Graph

• Definition Quasi Unit Disk Graph: 

Let V∈ R2, and d ∈ [0,1]. The symmetric
Euclidean graph G=(V,E), such that for
any pair u,v ∈ V

• dist(u,v) � d ⇒ {u,v} ∈ E

• dist(u,v) > 1  ⇒ {u,v}    E

is called d-quasi unit disk graph. 

• Note that between d and 1, the existence of an edge is unspecified.  

d

1
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Reduction

• We want to show that finding an embedding with
, where ε goes to 0 for n �∞ is NP-hard.

• We prove an equivalent statement:

Given a unit disk graph G=(V,E), it is NP-
hard to find a realization of G as a d-quasi
unit disk graph with , where ε
tends to 0 for n�∞.

� Even when allowing non-edges to be smaller than 1, embedding a 
unit disk graph remains NP-hard! 

� It follows that finding an approximation ratio better than
is also NP-hard.  
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Reduction

• Reduction from 3-SAT (each variable appears in at most 3 clauses)
• Given a instance C of this 3-SAT, we give a polynomial time 

construction of GC=(VC, EC) such that the following holds:

– C is satisfiable ⇒ GC is realizable as a unit disk graph
– C is not satisfiable ⇒ GC is not realizable as a d-quasi unit disk

graph with

• Unless P=NP, there is no approximation algorithm with
approximation ratio better than . 
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Proof idea

• Construct a grid drawing of the SAT instance. 
• Grid drawing is orientable iff SAT instance is satisfiable.
• Grid components (clauses, literals, wires, crossings,...) are

composed of nodes � Graph GC. 
• GC is realizable as a d-quasi unit disk graph with

iff grid drawing is orientable.  
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Summary

• Virtual coordinates problem is important!
• Natural formulation as unit disk graph embedding. 

� Clear-cut optimization problem. 

Upper Bound :   
Lower Bound :  

� Gap between upper and lower bound is huge! 

Open Problems:

• Diminish gap between upper and lower bound

• Distributed Algorithm
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Heuristics: Spring embedder

• Nodes are “masses”, edges are “springs”. 
• Length of the spring equals the distance measurement.
• Springs put forces to the nodes, nodes move, until stabilization.
• Force: Fij =dij – rij, along the direction pipj.
• Total force on ni: Fi=Σ Fij.
• Move the node ni by a small distance (proportional to Fi).

j
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dij

Fij
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Spring Embedder Discussion

• Problems: 
– may deadlock in local minimum

– may never converge/stabilize (e.g. just two nodes)

• Solution: Need to start from a reasonably good initial estimation.
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Heuristics: Priyantha et al.
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Continued

Phase 2: Spring Embedder
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Heuristics: Gotsman et al.
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Continued
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Heuristics: Shang et al.

[F
le

is
ch

er
 &

 P
ic

h]

Distributed Computing Group    MOBILE COMPUTING R. Wattenhofer 12/31

Heuristics: Bruck et al.
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Practical lessons

Theory Practice

• RSSI in sensor networks: good, but not for “reasonable” localization

• For exact indoor localization
• Buy special hardware (e.g., UWB)

• Place huge amount of short range anchors for single-hop localization


