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Motivation Measurements
o o} o
* Why positioning? Distance estimation
— Sensor nodes without position information is often meaningless « Received Signal Strength Indicator (RSSI)
— Heavy and/or costly positioning hardware — The further away, the weaker the received signal.
— Geo-routing

— Mainly used for RF signals.
@ » Time of Arrival (ToA) or Time Difference of Arrival (TDoA)
— Signal propagation time translates to distance.

me A
— RF, acoustic, infrared and ultrasound.

e Why not GPS (or Galileo)?

— Heavy, large, and expensive (as of yet) Angle estimation

— Battery drain » Angle of Arrival (AoA)

— Not indoors — Determining the direction of propagation of a radio-frequency wave

— Accuracy? incident on an antenna array.

» Directional Antenna

* Solution: equip small fraction with GPS (anchors) _+ Special hardware, e.g., laser transmitter and receivers.

whe
O O
Q i..g L . ./i ..g . .
|- Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 12/3 \‘@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 12/4
Ak




Positioning (a.k.a. Localization)

o}

» Task: Given distance or angle measurements or mere connectivity
information, find the locations of the sensors.

e Anchor-based

— Some nodes know their locations, either by a GPS or as pre-specified.
e Anchor-free

— Relative location only. Sometimes called virtual coordinates.

— Theoretically cleaner model (less parameters, such as anchor density)

* Range-based
— Use range information (distance estimation).

e Range-free
— No distance estimation, use connectivity information such as hop count.
— It was shown that bad measurements don’t help a lot anyway.
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Trilateration and Triangulation
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» Use geometry, measure the distances/angles to three anchors.

» Trilateration: use distances
— Global Positioning System (GPS)

» Triangulation: use angles P .
P \\ N // . C \
— Some cell phone systems / .. &g ;

» How to deal with inaccurate | a ]
measurements? N ,
— Least squares type of approach

— What about strictly more than
3 (inaccurate) measurements?
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Ambiguity Problems

+ Same distances, different realization.

(a) Ground truth (b) Alternate realization

[Jie Gao]

Terr — O‘-))T Teprr — 0‘34
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o
[Jie Gao]
* Rigidity theory: Given a set of rigid bars connected by hinges,
rigidity theory studies whether you can move them continuously.
./i O O
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Simple hop-based algorithms

o}

» Algorithm
— Get graph distance h to anchor(s)
— Intersect circles around anchors
« radius = distance to anchor
— Choose point such that maximum error is minimal

* Find enclosing circle (ball) of minimal radius

« Center is calculated location

¢ In higher dimensions: 1 <d <h

— Rule of thumb: Sparse graph
- bad performance
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How about no anchors at all...?

o}

* In absence of anchors...
- ...nodes are clueless about real coordinates.

* For many applications, real coordinates are not necessary
- Virtual coordinates are sufficient

- Geometric Routing requires only virtual coordinates
* Require no routing tables
¢ Resource-frugal and scalable
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Virtual Coordinates

o

* ldea:
Close-by nodes have similar coordinates
Distant nodes have very different coordinates

-> Similar coordinates imply physical proximity!

« Applications
— Geometric Routing
Locality-sensitive queries
— Obtaining meta information on the network
Anycast services (,Which of the service nodes is closest to me?*)
— Outside the sensor network domain: e.g., Internet mapping

1
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Model

o

Unit Disk Graph (UDG) to model
wireless multi-hop network

— Two nodes can communicate iff

Euclidean distance is at most 1

» Sensor nodes may not be capable of
— Sensing directions to neighbors
— Measuring distances to neighbors

e Goal: Derive topologically correct coordinate information from
connectivity information only.
— Even the simplest nodes can derive connectivity information
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Context

o}

Distance/Angle Connectivity
information information only

I
Positioning

With Anchors
(Solution quality depends on anchor density)

Distance/Angle based Connectivity based
No Anchors
Virtual Coordinates Virtual Coordinates
next
s
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Virtual Coordinates «—— UDG Embedding

e Given the connectivity information for each node...

v, v, v, v, Ve ...and knqwmg the underlying
graphis a UDG...
Va Vi Vv, V3 Vi
A A Vv, Ve A
Vs v,

e ..find a UDG embedding in the plane ;
such that all connectivity requirements are
fulfilled! (= Find a realization of a UDG)

This problem is NP-hard!
:> (Simple reduction to UDG-recognition
problem, which is NP-hard)

O [Breu, Kirkpatrick, Comp.Geom.Theory 1998]
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UDG Approximation — Quality of Embedding

» Finding an exact realization of a UDG is NP-hard.
- Find an embedding r(G) which approximates a realization.

« Particularly,
- Map adjacent vertices (edges) to points which are close together.

- Map non-adjacent vertices (,non-edges”) to far apart points.

» Define quality of embedding q(r(G)) as:

Ratio between longest edge to shortest non-edge in the
embedding.

Let p(u,v) be the

distance between q(r(@)) = MaXtuvicE p(u,v)
i i . i T

gﬁéﬁfdﬂiﬁgd vine mingy vyge p(u', ')
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UDG Approximation

« For each UDG G, there exists
an embedding r(G), such () - rT}‘J‘X{u,v}eEp(u,v)
that, q(r(G)) < 1. ming, nepp(u,v")
(a realization of G)

e Finding such an embedding is NP-hard

graphs G, g(r, (G))< a.

e Example:

N\

@.‘ r(q(G)): 1.8/0.7=26
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Some Results

o}

» There are a few virtual coordinates algorithms
All of them evaluated only by simulation on random graphs
« Infact there is only one provable approximation algorithm

There is an algorithm which achieves an approximation ratio of
O(log?®n\/loglogn) , n being the number of nodes in G.

» Plus there are lower bounds on the approximability.

There is no algorithm with approximation

ratio better than /3/2 — ¢, unless P=NP.

s

Approximation Algorithm: Overview

o}

* Four major steps )
UDG Graph G with MIS M.

1. Compute metric on MIS of input
graph - Spreading constraints

(Key conceptual difference to . . .
previous approaches!) Approximate pairwise distances

between nodes such that, MIS
nodes are neatly spread out.

2. Volume-respecting, high I
dimensional embedding

Volume respecting embedding of

nodes in R"with small distortion.

3. Random projection to 2D l
Nodes spread out fairly well in R2.

|

4. Final embedding

o . Final embedding of G in R2.
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Lower Bound: Quasi Unit Disk Graph Reduction
o o »0

» Definition Quasi Unit Disk Graph:

Let Ve R?, and d € [0,1]. The symmetric
Euclidean graph G=(V,E), such that for
any pair u,v € V

e dist(u,v) <d={uVv} €E
e dist(uv)>1 = {uV}¢ E

is called d-quasi unit disk graph.

* Note that between d and 1, the existence of an edge is unspecified.
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*  We want to show that finding an embedding with
q(r(G)) < 4/3/2 — €, where € goes to 0 for n & oo is NP-hard.

» We prove an equivalent statement:

Given a unit disk graph G=(V,E), it is NP-
hard to find a realization of G as a d-quasi
unit disk graph with d > \/% + ¢, where €
tends to 0 for n>oo.

- Even when allowing non-edges to be smaller than 1, embedding a
unit disk graph remains NP-hard!

- It follows that finding an approximation ratio better than/3/2 — ¢
is also NP-hard.
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Reduction

o}

» Reduction from 3-SAT (each variable appears in at most 3 clauses)

» Given ainstance C of this 3-SAT, we give a polynomial time
construction of G.=(V, E¢) such that the following holds:

— Cis satisfiable = G, is realizable as a unit disk graph
— Cis not satisfiable = G is not realizable as a d-quasi unit disk
graph with d > (/2/3 4+ ¢

» Unless P=NP, there is no approximation algorithm with
approximation ratio better than 1/3/2 —e.

O
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Proof idea

o}

» Construct a grid drawing of the SAT instance.
» Grid drawing is orientable iff SAT instance is satisfiable.

» Grid components (clauses, literals, wires, crossings,...) are
composed of nodes - Graph Ge.

* G isrealizable as a d-quasi unit disk graph with d > /2/3 4 ¢
iff grid drawing is orientable.
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Summary

o

» Virtual coordinates problem is important!
» Natural formulation as unit disk graph embedding.
- Clear-cut optimization problem.

Upper Bound :  « € O(log?5n+/loglogn)
Lower Bound: «a>4/3/2—¢

- Gap between upper and lower bound is huge!

Open Problems:

» Diminish gap between upper and lower bound

« Distributed Algorithm

O
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Heuristics: Spring embedder

N\

* Nodes are “masses”, edges are “springs”.

* Length of the spring equals the distance measurement.

» Springs put forces to the nodes, nodes move, until stabilization.
 Force: F;=d; —r;, along the direction pp;.

+ Total force on n: F=X F;.

* Move the node n; by a small distance (proportional to F;).

O
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Spring Embedder Discussion

Heuristics: Priyantha et al.

o}

o}

Problems:
— may deadlock in local minimum
— may never converge/stabilize (e.g. just two nodes)

Solution: Need to start from a reasonably good initial estimation.

N.B. Priyantha, H. Balakrishnan, E. Demaine, S. Teller:
Anchor-Free Distributed Localization
in Sensor Networks, SenSys, 2003.

iterative process minimizes the layout energy

2 —
o Ep) = > (Il—npll—4) 5
(a) Ground truth (b) Alternate realization {i]1eE g
» fact: layouts can have foldovers E
= without violating the distance constraints .%
& » problem: optimization can converge L
% to such a local optimum
» solution: find a good initial layout
Oerr = 0.37 Oerr = 0.34 fold-free — already close to the
global optimum (=“real layout”)
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Continued Heuristics: Gotsman et al.
o o} o »0
A C. Gotsman, Y. Koren [5]. Distributed
Phase 1: compute initial layout ’
P y Graph Layout for Sensor Networks, GD, 2004.
» determine periphery i ) v
nodes Un. Ue. U U » initial placement: spread sensors
N- Us. Uy, Ug CyupeePCHIP-PIE
» determine central >icj llpi—pyl
hode ug = » linear algebra: =
» use polar coordinates w & minimized by second highest &
S eigenvector v, of A where =
d(v.un)—d(v,us) ) _ exp(—£y) @
w =d(v,u 6, = arctan : : < 8jj = —v— 7 <
pv = d(v.uc) oy (d(v, uw) — d(v, ug) 2 | ZitnesSPE) 2
© ajj = Q
as positions of node v = » x,Ax, A’x, A%x, ... converges to vo =
1y L ZidireE EXP(*U/XJ))
" =g (X' * > g jyeE &XP(=L)
Phase 2: Spring Embedder » compute third eigenvector vs,
use Vo, 3 as coordinates
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Continued

o}

» distributed optimization (spring model)
» alternative: majorization
» compute sequence of

Heuristics: Shang et al.

o}

Y. Shang, W. Ruml [7].
Improved MDS-based Localization, /EEE Infocom, 2004.

» compute a local map
for each node

B\

layouts p(@), p(") p(®) . with = =
E(p®) > E(p") > E(p@) > . .. 2 (local MDS of the 2
» solve linear equation 3 2-hop neighborhood) 3
LU+ plt+1) = [(Hp(®) g g
in distributed manner 2 » merge local map patches 3
i into a global map i
(use incremental or
binary-tree strategy)
» apply distributed
optimization to the result
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Heuristics: Bruck et al. Practical lessons
o 0 o 12%
J. Bruck, J. Gao, A. Jiang [8]. Localization a.nd Routing in Theory Practice
Sensor Networks by Local Angle Information,
Mobile Ad Hoc Networking & Computing, 2005.
» Choose an edge e as x-axis to
obtain absolute angles.
» Form an LP whose variables are 5
the edge lengths /(e). g
» Forall edges 0 < /(e) <1. 5
<
» Foranycyclees,..., ep: 3
ZL {(ej)cos i = 0 and i » RSSI in sensor networks: good, but not for “reasonable” localization
S Ue)sint; =0.
» Non-adjacent node pair constraints. « For exact indoor localization
» Crossing-edge constraints. « Buy special hardware (e.g., UWB)
» Place huge amount of short range anchors for single-hop localization
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