
Programming 
Sensor Networks

Nicolas Burri
Pascal von Rickenbach

Distributed
Computing

Group

MOBILE COMPUTING 2

Overview

• TinyOS Platform 
• Program Development
• Current Projects

MOBILE COMPUTING 3

Sensor Nodes

• System Constraints 
– Slow CPU
– Little memory
– Short-range radio
– Battery powered

MOBILE COMPUTING 4

Operating System Requirements

• Measure real-world phenomena
– Event-driven architecture

• Resource constraints
– Hurry up and sleep!

• Adapt to changing technologies
– Modularity & re-use

• Applications spread over many small nodes
– Communication is fundamental

• Inaccessible location, critical operation
– Robustness



MOBILE COMPUTING 5

TinyOS Platform

• TinyOS consists of a scheduler & graph of components

MOBILE COMPUTING 6

Programming Model

• Separate construction and composition

• Programs are built out of components specified by an interface

• Two types of components
– Modules: Implement behavior
– Configurations: Wire components together

• Components use and provide interfaces

provides „hooks“ for
component wiring

Interfaces are 
bidirectional

Component A

Component B

Interface I

MOBILE COMPUTING 7

Component A

Component B

Interface I

Programming Model

• Interfaces contain definitions of
– Commands
– Events

• Components implement the events they use and the commands 
they provide.

pr
ov

id
es

uses

must implement commands,
can signal events

can call commands,
must implement events

MOBILE COMPUTING 8

Programming Model

• Components are wired together by connecting interface users with
providers.

• Commands flow downwards
– Control returns to caller

• Events flow upwards
– Control returns to signaler

• Commands are non-blocking
requests. 

Event

Component C

Component B

Component A
Command

Modular construction kit



MOBILE COMPUTING 9

Concurrency Model

• Coarse-grained concurrency only
– Implemented via tasks

• Tasks run sequentially by TinyOS scheduler
– “Multi-threading” is done by the programmer
– Atomic with respect to other tasks (single threaded)
– Longer background processing jobs

• Events (interrupts)
– Time critical
– Preempt tasks
– Short duration (hand off computation to tasks if needed)

Note that “event” is overloaded

Actually single threaded!

MOBILE COMPUTING 10

Memory Model

• Static memory allocation
– No heap (malloc)
– No function pointers

• Global variables
– One frame per component

• Local variables
– Declared within a method
– Saved on the stack

• Conserve memory
• Use pointers, don’t copy buffers

10 kBFree

Global

Stack

MOBILE COMPUTING 11

Network Stack

• Ready-to-use communication framework
– Simple hardware abstraction
– Standardized message format
– Integrated dispatcher 

GenericComm
AMStandard RadioCRCPacket

UARTFramedPacket

TimerC• start()
• stop()

• fired()

• send()

• sendDone()
• receive()

• send()
• sendDone()
• receive()

• send()
• activity()

• sendDone()
• receive()

This is just a configuration!

Dispacher for different
messages types

MOBILE COMPUTING 12

TinyOS Distribution

• TinyOS is distributed in source code
– nesC as programming language

• nesC
– Dialect of C
– Embodies the structuring concepts and execution model of TinyOS

• Module, configuration, interface
• Tasks, calls, signals

– Pre-processor producing C code

• nesC limitations
– No dynamic memory allocation
– No function pointers



MOBILE COMPUTING 13

nesC – Hello World

configuration Blink {
}
implementation {

components Main,BlinkM,TimerC,LedsC;

Main.StdControl -> BlinkM.StdControl;
Main.StdControl -> TimerC;

BlinkM.Timer -> TimerC;
BlinkM.Leds -> LedsC;

}

module BlinkM {
provides {

interface StdControl;
}
uses {

interface Timer;
interface Leds;

}
}
implementation {

…
command result_t StdControl.start() {

return call Timer.start(TIMER_REPEAT, 1000);
}

task void processing() {
call Leds.redToggle();

}

event result_t Timer.fired() {
post processing();
return SUCCESS;

}
}

Wiring the components

All involved components

Timer fires every second

Schedule the actual 
computation 

MOBILE COMPUTING 14

TinyOS Development

• Application development on PC

• Programs are compiled to
platform specific binaries

• Transfer of binary code using
programming boards
– Serial port 
– Ethernet
– USB

[tinynode manual]

[mib600 data sheet]

MOBILE COMPUTING 15

TinyOS Development Today

• Text Editor
– No editor with inbuilt nesC support available
– Programming in generic text editors

• UltraEdit
• Emacs

• Shell
– Make system

• Compiling of programs
• Flashing of nodes

– Additional tools

• File Browser
– Project files
– Interface definitions
– System libraries

make tinynode install,0 bsl,2

MOBILE COMPUTING 16

TinyOS Development Today



MOBILE COMPUTING 17

What needs to be improved

• Getting started
– Setting up the environment is tricky
– Frustrating without the help of an expert

• Syntax check before compiling
– Compiling takes up to 1 min even for small programs

• Better debugging support
– Only three LEDs to show the current state of the application

• Reference
– What interfaces exist?
– Which module implements this interface?

MOBILE COMPUTING 18

TinyOS Plugin for Eclipse

Outline

Make Options

Project Files

Search


