Chapter 7
TOPOLOGY
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Overview — Topology Control
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+ Gabriel Graph et al.
+ XTC

* Interference
SINR & Scheduling Complexity
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Topology Control Topology Control as a Trade-Off
o o o Sometimes also clustering, —o
B} Dominating Set construction
AR - o i (See later)
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+ Drop long-range neighbors: Reduces interference and energy!
« But still stay connected (or even spanner)
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Network Connectivity

Conserve Energy
Spanner Property

Reduce Interference
Sparse Graph, Low Degree
Planarit
d(uV) -t 2 dre(Uv) Symme%/ric Links
Less Dynamics

ET/
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Gabriel Graph Delaunay Triangulation

o o

+ Let disk(u,v) be a disk with diameter (u,v) v + Let disk(u,v,w) be a disk defined by
that is determined by the two points u,v. the three points u,v,w. \
+ The Gabriel Graph GG(V) is defined ’ + The Delaunay Triangulation (Graph) ‘
as an undirected graph (with E being u DT(V) is defined as an undirected ) ‘ w
a set of undirected edges). There is an graph (with E being a set of undirected
edge between two nodes u,v iff the edges). There is a triangle of edges
disk(u,v) including boundary contains no between three nodes u,v,w iff the
other points. AT disk(u,v,w) contains no other points.
+ As we will see the Gabriel Graph LS N oA » The Delaunay Triangulation is the
has interesting properties. . R dual of the Voronoi diagram, and

AN widely used in various CS areas;
) the DT is planar; the distance of a
path (s,...,t) on the DT is within a
constant factor of the s-t distance.

AL rain
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Other planar graphs Properties of planar graphs

o} [og

» Relative Neighborhood Graph RNG(V) + Theorem 1:

MST(V) = RNG(V) c GG(V) = DT(V)

* Anedge e = (u,v) is in the RNG(V) iff
there is no node w with (u,w) < (u,v) « Corollary:

and (v,w) < (u,v). Since the MST(V) is connected and the DT(V) is planar, all the
planar graphs in Theorem 1 are connected and planar.

* Theorem 2:
The Gabriel Graph contains the Minimum Energy Path
(for any path loss exponent o > 2)

e Minimum Spanning Tree MST(V)

» A subset of E of G of minimum weight
which forms a tree on V.

Corollary:
GG(V) N UDG(V) contains the Minimum Energy Path in UDG(V)

N N
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More examples

o 0

+ B-Skeleton

— Generalizing Gabriel (3 = 1) and
Relative Neighborhood ( = 2) Graph

* Yao-Graph
— Each node partitions directions in
k cones and then connects to the
closest node in each cone

+ Cone-Based Graph

— Dynamic version of the Yao
Graph. Neighbors are visited
in order of their distance,
and used only if they cover
not yet covered angle
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O

XTC: Lightweight Topology Control

+ Topology Control commonly assumes that the node positions are

known.

+  What if we do not have access to position information?

+ XTC algorithm

+ XTC analysis
— Worst case
— Average case

"W

an
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XTC: lightweight topology control without geometry

Each node produces
“ranking” of neighbors.
* Examples
— Distance (closest)
— Energy (lowest)
— Link quality (best)
* Not necessarily depending
on explicit positions
* Nodes exchange rankings
with neighbors
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XTC Algorithm (Part 2)

order of their ranking

candidate.

+ Each node locally goes
through all neighbors in

+ If the candidate (current
neighbor) ranks any of
your already processed
neighbors higher than
yourself, then you do not
need to connect to the

712




XTC Analysis (Part 1)

« Symmetry: A node u wants a node v as a neighbor if and only if v
wants u.

* Proof:
— Assume 1)u—->vand2)u <« v
— Assumption 2) = 3w: (i) w <, uand (i) w <, v
Y

Contradicts Assumption 1)

N\
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XTC Analysis (Part 1)

N\

'

Symmetry: A node u wants a node v as a neighbor if and only if v
wants u.

Connectivity: If two nodes are connected originally, they will stay so
(provided that rankings are based on symmetric link-weights).

If the ranking is energy or link quality based, then XTC will choose a
topology that routes around walls and obstacles.

1/)
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XTC Analysis (Part 2)

+ If the given graph is a Unit Disk Graph (no obstacles, nodes
homogeneous, but not necessarily uniformly distributed), then ...

+ The degree of each node is at most 6.
+ The topology is planar.
* The graph is a subgraph of the RNG.

» Relative Neighborhood Graph RNG(V):

* Anedge e = (u,v) is in the RNG(V) iff
there is no node w with (u,w) < (u,v)
and (v,w) < (u,v).

ws
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XTC Average-Case

Unit Disk Graph XTC
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XTC Average-Case (Degrees)

XTC Average-Case (Stretch Factor)

35 /\
~/
30 4 , P 1.25 - e
25 l/\‘— ~7 _-" -
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@ s v 5 P - XTC vs. UDG - Euclidean
S 21 it " E /
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g 7 r B
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AN IR Vead GG vs. UDG — Energy
0 \ w w XTC avg 1 w w w
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Network Density [nodes per unit disk] Network Density [nodes per unit disk]
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XTC Average-Case (Geometric Routing) k-XTC: More connectivity
O O O O
9. . « A graph is k-(node)-connected, if k-1 arbitrary nodes can be
. connectivity rate 9 removed, and the graph is still connected.
(0]
t/h)
S 71 GFG/GPSR on GG 708 + Ink-XTC, an edge (u,v) is only removed if there exist k nodes w,
6 T07 ..., W, such that the 2k edges (wy, u), ..., (W, U), (W;,V), ..., (W,,V)
® 106 = are all better than the original edge (u,v).
§ *1 0.5 g
g 4 1 04 § + Theorem: If the original graph is k-connected, then the pruned graph
g | GOAFR+ on Gy ‘ produced by k-XTC is as well.
+ 0.3
— 2 B
% \ 702 + Proof: Let (u,v) be the best edge that was removed by k-XTC. Using
Qo 14 = 0.1 the construction of k-XTC, there is at least one common neighbor w
0, G‘OAFRJ' on GG ‘ 0 that survives the slaughter of k-1 nodes. By induction assume that
0 5 10 15 this is true for the j best edges. By the same argument as for the
Network Density [nodes per unit disk] best edge, also the j+1st edge (u’,V’), since at least one neighbor
survives w’ survives and the edges (u’,w’) and (v',w’) are better.
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Low Node Degree Topology Control? Y

o .
N

Let’'s Study the Following Topology!

...from a worst-case perspective

. L] - L] . L
¢ L]
— Very low node degree !
but huge interference .
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Topology Control Algorithms Produce... W But Interference... T
o o

« All known topology control algorithms (with symmetric edges)
include the nearest neighbor forest as a subgraph and produce
something like this:

N

* The interference of this
graph is Q(n)!

ws

A
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+ Interference does not need to be high...

+ This topology has interference O(1)!!

“s
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Preserves Graph Connectivity
Constructs a spanner locally

B 22 8E

EFOE

LIFE (Low Interference Forest Establisher)

w
(24
3
@
0
s}
3

Link-based Interference Model
Link-based Interference Model

b
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LISE (Low Interference Spanner Establisher)
— Constructs a spanning subgraph

Link-based Interference Model
Interference-optimal topologies
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Link-based Interference Model

o .
N

* LocalLISE (Low Interference Spanner Establisher)

o

Average-Case Interference: Preserve Connectivity - =

N
\
v

~ Le-""e

— Constructs a spanner locally 90
LocalISE 70 1 F
o 60 -
~ Nodes collect g 50
(t/2)-neighborhood 5 RNG
— ' Locally compute interference- 3 40 1
minimal paths guaranteeing < 30
spanner property
20 1
— Only request that path to stay in ‘
the resulting topology 10
0 T T T T 1
0 10 20 30 40
. LocaI._ISE constructs a Network Density [nodes per unit disk]
\\{_,\ minimume-interference t-spanner \.{_,\
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Average-Case Interference: Spanners R Link-based Interference Model R
° » 0 o Ve .'_’ i
RNG
] - LUSE 2
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5 ,
0 T T T T
0 5 10 15 7§
Network Density [nodes per unit disk] LocalLISE,, | = 23
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Node-based Interference Model - /H‘
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+ Already 1-dimensional node distributions seem to yield |nherently
high interference...
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Node-based Interference Model - /H‘
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+ Already 1-dimensional node distributions seem to yield |nherently
high interference...

« ...but the exponential node chain can be connected in a better way

—_ = N~
‘ Interference € O(y/n)

W
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0

Node-based Interference Model o /ﬁ@
\

o

* Arbitrary distributed nodes in one dimension

— Approximation algorithm with approximation ratio in O({/7)

» Two-dimensional node distributions
— Randomized algorithm resulting in interference O(y/nlogn)

— No deterministic algorithm so far...

Y
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Towards a More Realistic Interference Model...

o

« Signal-to-interference and noise ratio (SINR)

‘,—

d(u,v)™

et et} T

* Problem statement

— Determine a power assignment and a schedule for each node

such that all message transmissions are successful i
e
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