
Chapter 9
DATA

GATHERING
Mobile Computing

Winter 2005 / 2006

Distributed
Computing

Group

Distributed Computing Group Mobile Computing R. Wattenhofer 9/2

Overview

• Motivation
• Data gathering with coding

– Self-coding
• Excursion: Shallow Light Tree

– Foreign coding
– Multicoding

• Universal data gathering tree
– Max, Min, Average, Median, Count Distinct, …

• Energy-efficient broadcasting

Distributed Computing Group Mobile Computing R. Wattenhofer 9/3

Sensor networks

• Sensor nodes
– Processor & memory
– Short-range radio
– Battery powered

• Requirements
– Monitoring geographic region
– Unattended operation
– Long lifetime

Distributed Computing Group Mobile Computing R. Wattenhofer 9/4

Data gathering

• All nodes produce relevant
information about their vicinity
periodically.

• Data is conveyed to an
information sink for further
processing.

Routing scheme

On which path is node u’s
data forwarded to the sink?

Distributed Computing Group Mobile Computing R. Wattenhofer 9/5

Time coding

• The simplest trick in the
book: If the sensed data of a
node changes not too often
(e.g. temperature), the node
only needs to send a new
message when its data
changes.

• Improvement: Only send
change of data, not actual
data (similar to video
codecs)

Distributed Computing Group Mobile Computing R. Wattenhofer 9/6

More than one sink?

• Use the anycast approach, and send to the closest sink.

• In the simplest case, a source wants to minimize the number of
hops. To make anycast work, we only need to implement the regular
distance-vector routing algorithm.

• However, one can imagine more complicated schemes where e.g.
sink load is balanced, or even intermediate load is balanced.

Distributed Computing Group Mobile Computing R. Wattenhofer 9/7

Correlated Data

• Different sensor nodes partially
monitor the same spatial region.

• Data might be processed as it is
routed to the information sink.

Data correlation

In-network coding

At which node is node
u’s data encoded?

Find a routing scheme and a coding scheme to deliver data
packets from all nodes to the sink such that the overall
energy consumption is minimal.

Distributed Computing Group Mobile Computing R. Wattenhofer 9/8

Coding strategies

• Multi-input coding
– Exploit correlation among several nodes.
– Combined aggregation of all incoming data.

• Single-input coding
– Encoding of a nodes data only depends on the side

information of one other node.

Recoding at intermediate nodes

Synchronous communication model

No recoding at intermediate nodes

No waiting for belated information at
intermediate nodes

Distributed Computing Group Mobile Computing R. Wattenhofer 9/9

4sr+ se

Single-input coding

• Self-coding
– A node can only encode its raw

data in the presence of side
information.

• Foreign coding
– A node can use its raw data to

encode data it is relaying.

u v

w

t

sr sr

2sr+se

u v

w

t

sr sr

sr+2se

Raw data size

Encoded data size

3sr + 2se

Distributed Computing Group Mobile Computing R. Wattenhofer 9/10

Self-coding

• Lower-bound the cost of an optimal topology

Set of nodes with no
side information

Set of nodes that encode
with data from u

Steiner tree
Shortest path

• Two ways to lower-bound this equation:

–

–

Distributed Computing Group Mobile Computing R. Wattenhofer 9/11

Algorithm

• LEGA (Low Energy Gathering Algorithm)

• Based on the shallow light tree (SLT)

• Compute SLT rooted at the sink t.
• The sink t transmits its packet pt

• Upon reception of a data packet pj at node vi

– Encode pi with pj→ pi
j

– Transmit pi
j to the sink t

– Transmit pi to all children

Size = sr

Size = se

Distributed Computing Group Mobile Computing R. Wattenhofer 9/12

Excursion: Shallow-Light Tree (SLT)

• Introduced by [Awerbuch, Baratz, Peleg, PODC 1990]

• Improved by [Khuller, Raghavachari, Young, SODA 1993]
– new name: Light-Approximate-Shortest-Path-Tree (LAST)

• Idea: Construct a spanning tree for a given root r that is both a MST-
approximation as well as a SPT-approximation for the root r. In
particular, for any γ > 0
–
–

• Remember:
– MST: Easily computable with e.g. Prim’s greedy edge picking algorithm
– SPT: Easily computable with e.g. Dijkstra’s shortest path algorithm

Distributed Computing Group Mobile Computing R. Wattenhofer 9/13

MST vs. SPT

• Is a good SPT not automatically a good MST (or vice versa)?

Distributed Computing Group Mobile Computing R. Wattenhofer 9/14

Result & Preordering

• Main Theorem: Given an α > 1, the algorithm returns a tree T rooted
at r such that all shortest paths from r to u in T have cost at most α
the shortest path from r to u in the original graph (for all nodes u).
Moreover the total cost of T is at most β = 1+2/(α-1) the cost of the
MST.

• We need an ingredient:
A preordering of a rooted
tree is generated when
ordering the nodes
of the tree as visited by
a depth-first search
algorithm.

Distributed Computing Group Mobile Computing R. Wattenhofer 9/15

The SLT Algorithm

1. Compute MST H of Graph G;
2. Compute all shortest paths (SPT) from the root r.
3. Compute preordering of MST with root r.
4. For all nodes v in order of their preordering do

• Compute shortest path from r to u in H. If the cost of this shortest path
in H is more than a factor α more than the cost of the shortest path in
G, then just add the shortest path in G to H.

5. Now simply compute the SPT with root r in H.

• Sounds crazy… but it works!

Distributed Computing Group Mobile Computing R. Wattenhofer 9/16

An example, α = 2

Graph

MST
SPT

x
x

Distributed Computing Group Mobile Computing R. Wattenhofer 9/17

Proof of Main Theorem

• The SPT α-approximation is clearly given since we included all
necessary paths during the construction and in step 5 only removed
edges which were not in the SPT.

• We need to show that our final tree is a β-approximation of the MST.
In fact we show that the graph H before step 5 is already a β-
approximation!

• For this we need a little helper lemma first…

Distributed Computing Group Mobile Computing R. Wattenhofer 9/18

A preordering lemma

• Lemma: Let T be a rooted spanning tree, with root r, and let z0, z1,
…, zk be arbitrary nodes of T in preorder. Then,

• “Proof by picture”: Every edge
is traversed at most twice.

• Remark: Exactly like the
2-approximation algorithm
for metric TSP.

Distributed Computing Group Mobile Computing R. Wattenhofer 9/19

Proof of Main Theorem (2)

• Let z1, z2, …, zk be the set of k nodes for which we added their
shortest paths to the root r in the graph in step 4. In addition, let z0 be
the root r. The node zi can only be in the set if (for example)
dG(r,zi-1) + dMST(zi-1,zi) > αdG(r,zi), since the shortest path (r,zi-1) and
the path on the MST (zi-1,zi) are already in H when we study zi.

• We can rewrite this as αdG(r,zi) - dG(r,zi-1) < dMST(zi-1,zi). Summing up:
αdG(r,z1) - dG(r,z0) < dMST(z0,z1) (i=1)
αdG(r,z2) - dG(r,z1) < dMST(z1,z2) (i=2)

… … …
αdG(r,zk) - dG(r,zk-1) < dMST(zk-1,zk) (i=k)

Σi=1…k(α-1) dG(r,zi) + dG(r,zk) < Σi=1…k dMST(zi-1,zi)

Distributed Computing Group Mobile Computing R. Wattenhofer 9/20

Proof of Main Theorem (3)

• In other words, (α-1) Σi=1…k dG(r,zi) < Σi=1…k dMST(zi-1,zi)

• All we did in our construction of H was to add exactly at most the
cost Σi=1…k dG(r,zi) to the cost of the MST. In other words,
cost(H) · cost(MST) + Σi=1…k dG(r,zi).

• Using the inequality on the top of this slide we have
cost(H) < cost(MST) + 1/(α-1) Σi=1…k dMST(zi-1,zi).

• Using our preordering lemma we have
cost(H) · cost(MST) + 1/(α-1) 2cost(MST) = 1+2/(α-1) cost(MST)

• That’s exactly what we needed: β = 1+2/(α-1).

Distributed Computing Group Mobile Computing R. Wattenhofer 9/21

How the SLT can be used

• The SLT has many applications in communication networks.

• Essentially, it
bounds the
cost of unicasting
(using the SPT)
and broadcasting
(using the MST).

• Remark: If you
use α = ,
then
β = 1+2/(α-1) = α.

www.dia.unisa.it/~ventre

Distributed Computing Group Mobile Computing R. Wattenhofer 9/22

Analysis of LEGA

Theorem: LEGA achieves a -approximation
of the optimal topology. (We use α = .)

tt

Slide 9/10

Distributed Computing Group Mobile Computing R. Wattenhofer 9/23

Foreign coding

• MEGA (Minimum-Energy Gathering Algorithm)
– Superposition of two tree constructions.

• Compute the shortest path tree (SPT) rooted at t.

• Compute a coding tree.
– Determine for each node u a corresponding

encoding node v.

u v

w

t

sr sr

sr+2se

Encoding must not result
in cyclic dependencies.

t

Coding tree
SPT u

t

u

vv

Distributed Computing Group Mobile Computing R. Wattenhofer 9/24

Coding tree construction

• Build complete directed graph
• Weight of an edge e=(vi,vj)

Cost from vi to the
encoding node vj.

Cost from vj to
the sink t.

• Compute a directed minimum spanning tree (arborescence) of this
graph. (This is not trivial, but possible.)

Theorem: MEGA computes a minimum-energy
data gathering topology for the given network.

All costs are summarized in the edge weights
of the directed graph.

Number of bits when
encoding vi‘s info at vj

Distributed Computing Group Mobile Computing R. Wattenhofer 9/25

Summary

• Self-coding:
– The problem is NP-hard [Cristescu et al, INFOCOM 2004]
– LEGA uses the SLT and gives a -approximation.
– Attention: We assumed that the raw data resp. the encoded data

always needs sr resp. se bits (no matter how far the encoding data is!).
This is quite unrealistic as correlation is usually regional.

• Foreign coding
– The problem is in P, as computed by MEGA.

• What if we allow both coding strategies at the same time?
• What if multicoding is still allowed?

Distributed Computing Group Mobile Computing R. Wattenhofer 9/26

Multicoding

• Hierarchical matching algorithm [Goel & Estrin SODA 2003].

• We assume to have concave,
non-decreasing aggregation
functions. That is, to transmit
data from k sources, we need
f(k) bits with f(0)=0, f(k) ≥ f(k-1),
and f(k+1)/f(k) · f(k)/f(k-1).

• The nodes of the network must be a metric space*, that is, the cost
of sending a bit over edge (u,v) is c(u,v), with
– Non-negativity: c(u,v) ≥ 0
– Zero distance: c(u,u) = 0 (*we don’t need the identity of indescernibles)
– Symmetry: c(u,v) = c(v,u)
– Triangle inequality: c(u,w) · c(u,v) + c(v,w)

#nodes

#b
its

Distributed Computing Group Mobile Computing R. Wattenhofer 9/27

The algorithm

• Remark: If the network is not a complete graph, or does not obey
the triangle inequality, we only need to use the cost of the shortest
path as the distance function, and we are fine.

• Let S be the set of source nodes. Assume that S is a power of 2. (If
not, simply add copies of the sink node until you hit the power of 2.)
Now do the following:

1. Find a min-cost perfect matching in S.
2. For each of the matching edges, remove one of the two nodes from

S (throw a regular coin to choose which node).
3. If the set S still has more than one node, go back to step 1. Else

connect the last remaining node with the sink.

Distributed Computing Group Mobile Computing R. Wattenhofer 9/28

The result

• Theorem: For any concave, non-decreasing aggregation function f,
and for [optimal] total cost C[*], the hierarchical matching algorithm
guarantees

• That is, the expectation of the worst cost overhead is logarithmically
bounded by the number of sources.

• Proof: Too intricate to be featured in this lecture.

Distributed Computing Group Mobile Computing R. Wattenhofer 9/29

Remarks

• For specific concave, non-decreasing aggregation functions, there
are simpler solutions.
– For f(x) = x the SPT is optimal.
– For f(x) = const (with the exception of f(0) = 0), the MST is optimal.
– For anything in between it seems that the SLT again is a good choice.
– For any a priori known f one can use a deterministic solution by [Chekuri,

Khanna, and Naor, SODA 2001]
– If we only need to minimize the maximum expected ratio (instead of the

expected maximum ratio), [Awerbuch and Azar, FOCS 1997] show how it
works.

• Again, sources are considered to aggregate equally well with other
sources. A correlation model is needed to resemble the reality
better.

Distributed Computing Group Mobile Computing R. Wattenhofer 9/30

Other work using coding

• LEACH [Heinzelman et al. HICSS 2000]: randomized clustering with data
aggregation at the clusterheads.
– Heuristic and simulation only.
– For provably good clustering, see the next chapter.

• Correlated data gathering [Cristescu et al. INFOCOM 2004]:
– Coding with Slepian-Wolf
– Distance independent correlation among nodes.
– Encoding only at the producing node in presence of side information.
– Same model as LEGA, but heuristic & simulation only.
– NP-hardness proof for this model.

Distributed Computing Group Mobile Computing R. Wattenhofer 9/31

TinyDB and TinySQL

• Use paradigms
familiar from
relational
databases to
simplify the
“programming”
interface for
the application
developer.

• TinyDB then supports
in-network aggregation to
speed up communication.

Distributed Computing Group Mobile Computing R. Wattenhofer 9/32

X

A

B

FC

GZ

Y

D
E

17

23

23

15

20

22

1822

22

Max = 23

19

Data Aggregation: N-to-1 Communication

• SELECT MAX(temp) FROM sensors WHERE temp > 15.

Average, Median, Count Distinct, ...?!

Distributed Computing Group Mobile Computing R. Wattenhofer 9/33

Selective data aggregation

• In sensor network applications
– Queries can be frequent
– Sensor groups are time-varying
– Events happen in a dynamic fashion

• Option 1: Construct aggregation trees for each group
– Setting up a good tree incurs communication overhead

• Option 2: Construct a single spanning tree
– When given a sensor group, simply use the induced tree

Distributed Computing Group Mobile Computing R. Wattenhofer 9/34

Group-Independent (a.k.a. Universal) Spanning Tree

• Given
– A set of nodes V in the Euclidean plane (or forming a metric space)
– A root node r ∈ V
– Define stretch of a universal spanning tree T to be

• We’re looking for a spanning tree T on V with minimum stretch.

Distributed Computing Group Mobile Computing R. Wattenhofer 9/35

root/sink

Example

• The red tree is the universal spanning tree. All links cost 1.

Distributed Computing Group Mobile Computing R. Wattenhofer 9/36

root/sink

Given the lime subset…

Distributed Computing Group Mobile Computing R. Wattenhofer 9/37

root/sink

Induced Subtree

• The cost of the induced subtree for this set S is 11. The optimal was 8.

Distributed Computing Group Mobile Computing R. Wattenhofer 9/38

Main results

• [Jia, Lin, Noubir, Rajaraman and Sundaram, STOC 2005]

• Theorem 1: (Upper bound)
For the minimum UST problem on Euclidean plane, an
approximation of O(log n) can be achieved within polynomial time.

• Theorem 2: (Lower bound)
No polynomial time algorithm can approximate the minimum UST
problem with stretch better than Ω(log n / log log n).

• Proofs: Not in this lecture.

Distributed Computing Group Mobile Computing R. Wattenhofer 9/39

Algorithm sketch

• For the simplest Euclidean case:
• Recursively divide the plane and select random node.

• Results: The induced tree
has logarithmic overhead.
The aggregation delay is
also constant.

Distributed Computing Group Mobile Computing R. Wattenhofer 9/40

Simulation with random node distribution & random events

Distributed Computing Group Mobile Computing R. Wattenhofer 9/41

Minimum Energy Broadcasting

• First step for data gathering, sort of.
• Given a set of nodes in the plane
• Goal: Broadcast from a source

to all nodes
• In a single step, a node may

transmit within a range by
appropriately adjusting
transmission power.

• Energy consumed by a
transmission of radius r is
proportional to rα, with α ≥ 2.

• Problem: Compute the sequence
of transmission steps that consume
minimum total energy, even in a centralized way.

[R
aj

om
oh

an
R

aj
ar

am
an

]

Distributed Computing Group Mobile Computing R. Wattenhofer 9/42

Three natural greedy heuristics

• In a tree, power for each parent node proportional to α’th exponent
of distance to farthest child in tree:

• Shortest Paths Tree (SPT)
• Minimum Spanning Tree (MST)
• Broadcasting Incremental Power (BIP)

– “Node” version of Dijkstra’s SPT algorithm
– Maintains an arborescence rooted at source
– In each step, add a node that can be reached with minimum increment

in total cost.

• Results:
– NP, not even PTAS, there is a constant approximation. [Clementi,

Crescenzi, Penna, Rossi, Vocca, STACS 2001]
– Analysis of the three heuristics. [Wan, Calinescu, Li, Frieder, Infocom 2001]

– Better and better approximation constants, e.g. [Ambühl, ICALP 2005]

Distributed Computing Group Mobile Computing R. Wattenhofer 9/43

2/))1()(1(αα εε −+−n

ε ε−1

Lower Bound on SPT

• Assume (n-1)/2 nodes per ring

• Total energy of SPT:

• Better solution:
• Broadcast to all nodes
• Cost 1

• Approximation ratio Ω(n).

Distributed Computing Group Mobile Computing R. Wattenhofer 9/44

• Weight of an edge (u,v) equals d(u,v)α.

• MST for these weights same as Euclidean MST
– Weight is an increasing function of distance
– Follows from correctness of Prim’s algorithm

• Upper bound on total MST weight
• Lower bound on optimal broadcast tree

Performance of the MST Heuristic

Distributed Computing Group Mobile Computing R. Wattenhofer 9/45

≥ 60° ≤ radius

60°

Empty Disjoint

Structural Properties of MST

[R
aj

om
oh

an
R

aj
ar

am
an

]

Distributed Computing Group Mobile Computing R. Wattenhofer 9/46

Upper Bound on Weight of MST

• Assume α = 2
• For each edge e, its diamond

accounts for an area of exactly

• Diamonds for edges in circle can be slightly outside circle, but not
too much: The radius factor is at most , hence the total area
accounted for is at most

• Now we can bound the cost of the MST in a unit disk with

• This analysis can be extended to α > 2, and improved to 12.

60°

| e |2

2 3

π(2 / 3)2
= 4π / 3

Distributed Computing Group Mobile Computing R. Wattenhofer 9/47

• Also the optimal algorithm needs a few transmissions. Let u0, u1, …,
uk be the nodes which need to transmit, each ui with radius ri. These
transmissions need to form a spanning tree since each node needs
to receive at least one transmission.

• Then the optimal algorithm needs power

• Now replace each transmission (“star”) by
an MST of the nodes. Since all new edges
are part of the transmission circle, the cost
of the new graph is at most

• Since the cost of the global MST is
at most the cost of this spanner, the MST is 12-competitive.

ru
α

u
∑

12 ru
α

u
∑

Lower Bound on Optimal and Conclusion of Proof

