
ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 –

Glacier
Highly durable, decentralized storage

despite massive correlated failures

Andreas Haeberlen, Alan Mislove, Peter Druschel
Department of Computer Science, Rice University

1

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 2

Overview

◆ Classical Concept

◆� Glacier
• � Concept
• � Distribution of data
• � Recovery
• � Environment
• � Security

◆� ePost experiment
� • � Setup

• � Results

◆� Glacier for a Real File Server

◆� Competitors?
• � Academic
• � Commercial/Industrial

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 3

«Classical» System

central
backup store (one or more)

central fileserver with primary store with
redundancy (RAID-array)

pool of workstations
(different OS)

Problems/Disadavantages
◆� Fileserver, primary store and backup store run the same OS → same vulnarabilities
◆� Additional redundancy through more separated backup stores is expensive
◆� Disk capacity of workstations is huge and underused (often up to 90% free)
→ could be used for decentralized storage

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 4

Overview

◆ Classical Concept

◆� Glacier
• � Concept
• � Distribution of data
• � Recovery
• � Environment
• � Security

◆� ePost experiment
� • � Setup

• � Results

◆� Glacier for a Real File Server

◆� Competitors?
• � Academic
• � Commercial/Industrial

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 5

Glacier

◆� Glacier assigns every object (e.g. file)
to store a key k.

◆� Every object is recoded into N
fragments so that r<N of them contain
sufficient information to restore the
object.

◆� Every fragment is identified by a
fragment key (k,i,v) where i is a
fragment index and v a version
number.

◆� Every participating workstation is
assigned a node id.

◆� The node id space is circular.

→� The fragments are distributed on the
workstations.

1

5
10

15

20

25

30

Workstation

Glacier Primary Store

Applications or OS

P (k, i, v) = k +
i

N + 1
+ H(v)

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 6

Fragment Placement

◆� The fragment placement function
P(k,i,v) distributes the fragments on the
workstations:

At postion k a full replica of object k is
stored. The n fragments are stored at
equidistant points in the id space.

1

5
10

15

20

25

30

full replica

fragment

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 7

Offline Workstations

Problem
Certain replicas and/or fragments cannot be stored.

1

5
10

15

20

25

30

full replica

fragment

temporarily
stored
fragment

offline node

Solution
New Objects
◆� Glacier sends probe messages to find nodes near

(regarding the node id) the missing node.
◆� The replicas and/or fragments are stored on one

of these neighbouring nodes.

Existing Objects
◆ � Regular maintenance task on every node which

copies objects to «correct» nodes as soon as
these are again online.

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 8

Garbage Collection

◆ � No delete function implemented due to security reasons.

◆ � Instead every object has a lease period l:
� • � Lease period has to be renewed by owner (appliction or OS).

• � Every version of an object is identified by a version number v
�� and is stored independently.
�� Frequent changes → massive storage use.

� • � If lease period has expired, storage can be reclaimed.

P (k, i, v) = k +
i

N + 1
+ H(v)

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 9

Aggregation

◆ � Storing every single object (file) independently leads
to high overhead.Applications or OS

Glacier Primary Store

single object

aggregate
� � The indegree of every aggregate is kept above

�� a fixed number dmin.
• � Head contains link to newest aggregate.

� • � An aggregate directory mapping objects (files)
�� to aggregates is kept at the primary store.

◆ � Glacier forms aggregates of groups of objects at the
primary store:
• � Aggregates are distributed on to the nodes.
• � Aggregates contains several keys of other
�� previously stored aggregates to facilitate recovery
�� → directed acyclic graph.

31 2 4 Head

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 10

Recovery

Case 1: Massive failures of nodes or connectivity
but primary store still running
◆ � Normal maintenance tasks assure that fragments are distributed as soon as the nodes

are reachable again.
◆� Every node only distributes a limited number of fragments at the same time to

prevent congestion on the network.

Case 2: Massive failures including primary store
◆� Waiting until connecitivity between the remaining nodes and a new primary store is

established (manual intervention by sys admin necessary).
◆� Using the head of the aggregate graph the keys of all currently used aggregates can

be retrieved.
◆� The data of the retrived aggregates is copied to the new primary store
◆� The aggregate directory is rebuilt.

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 11

Environment

What does Glacier need to work?

Connectivity
◆ � Network with enough bandwidth between nodes.
◆� Reliable end-to-end communication (e.g. TCP/IP) between nodes.

Security
◆� Encryption of transmission data and stored data (symmetric, e.g. 3DES, AES, IDEA).
◆� Message authentication between nodes (e.g. public/private key system).

Overlay network
◆� Provides mapping of keys to nodes responsible for these keys (Pastry).

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 12

Security (I)

Integrity
◆ � Remote deletion impossible
→ attacker can only overwrite fragments and replicas on directly controlled nodes.

◆� Every fragment and replica is encrypted and contains a signed hash (e.g. SHA-1)
→ manipulation would be detected (but replica or fragment is lost).

Durability
◆� Attacker must destroy at least r of N fragments and all replicas to destroy data.
→� Difficult to find the hosts responsible for these fragements due to
�� - encrypted communication between hosts
�� - pseudo random selection of storage nodes

◆� Attacker must disable the network to stop fragment and replica distribution.

Space filling attacks
◆� Insertion of large objects into Glacier
◆� Insertion of large objects on to the storage nodes
→� Must be prevented by OS and/or applications.

D = P (s ! r)

=
N∑

k=r

(
N

k

)
(1 − fmax)k

· fN−k
max

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 13

Security (II)

Variables
|O| Size of object.
N Number of fragments stored per object.
r Number of fragments containing enough data for reconstruction.
→� � The storage overhead S is determined by the code (N/r).

�� The message overhead is determined by N. �
fmax Failure rate of any node.

Durability of an object
Probability that at least r Fragments survive
(data can be reconstructed).

Failure
fmax

Durability
D

Code
r

Fragments
N

Storage
S

0.30 0.9999 3 13 4.33

0.50 0.99999 4 29 7.25

0.60 0.999999 5 48 9.60

0.70 0.999999 5 68 13.60

0.85 0.999999 5 149 29.80

0.63 0.999999 1 30 30.00

PD(n) = D
n

and may reclaim the corresponding storage. Since the
lease is part of the authenticator, which accompanies ev-
ery fragment, this process can be carried out indepen-
dently by each storage node.

However, assuming closely synchronized clocks
among the storage nodes would be unrealistic. There-
fore, fragments are not deleted immediately; instead,
they are kept for an additional grace period TG, which
is set to exceed the assumed maximal difference among
the clocks. During this time, the fragments are still avail-
able for queries, but they are no longer advertised to other
nodes during maintenance. Thus, nodes that have already
deleted their fragments do not attempt to recover them.

Glacier has explicit protection against attacks on its
time source, such as NTP. This feature is discussed in
Section 6.

4.8 Configuration

Glacier’s storage overhead is determined by the overhead
for the erasure code, which is N

r
, while the message over-

head is determined by the number of fragments N that
have to be maintained per object. Both depend on the
guaranteed durability Pmin and the maximal correlated
failure fraction fmax, which are configurable.

Since suitable values for N and r have to be chosen
a priori, i.e. before the failure has occurred, we do not
know which of the nodes are going to be affected. Hence,
all we can assume is that the unknown failure will af-
fect any particular node with probability fmax. Note that
this differs from the commonly assumed Byzantine fail-
ure model, where the attacker gets to choose the nodes
that will fail. In our failure model, the attacker can only
compromise nodes that share a common vulnerability,
and these are distributed randomly in the identifier space
because of the pseudo-random assignment of node iden-
tifiers.

Consider an object O whose N fragments are stored
on N different nodes. The effect of the unknown corre-
lated failure on O can be approximated by N Bernoulli
trials; the object can be reconstructed if at least r trials
have a positive outcome, i.e. with probability

D = P (s ≥ r) =
N∑

k=r

(
N

k

)
(1 − fmax)

k · fmax
N−k

The parameters N and r should be chosen such that P
meets the desired level of durability. Figure 3 shows the
lower bound on N and the storage overhead for different
assumed values of fmax and for different choices of r.
Table 1 shows a few example configurations.

While D represents the durability for an individual
object, the user is probably more concerned about the
durability of his entire collection of objects. If we as-

Failure Durability Code Fragments Storage
fmax D r N S

0.30 0.9999 3 13 4.33
0.50 0.99999 4 29 7.25
0.60 0.999999 5 48 9.60
0.70 0.999999 5 68 13.60
0.85 0.999999 5 149 29.80
0.63 0.999999 1 30 30.00

Table 1. Example configurations for
Glacier. For comparison, a configuration
with simple replication (r=1) is included.

sume that the number of storages nodes is large and that
keys are assigned randomly (as is the case for content-
hash keys), object failures are independent, and the prob-
ability that a collection of n objects survives the failure
unscathed is PD(n) = Dn. Figure 4 shows a graph of
PD for different values of D.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000

P
ro

ba
bi

lit
y

of
 s

ur
vi

va
l

Number of objects

D=0.9999
D=0.99999
D=0.999999

Figure 4. Probability of survival for collec-
tions of multiple objects.

If the value for fmax is accidentally chosen too low,
Glacier still offers protection; the survival probability
degrades gracefully as the magnitude of the actual fail-
ure increases. For example, if fmax = 0.6 and Pmin =
0.999999 were chosen, P is still 0.9997 in a failure with
f = 0.7, and 0.975 for f = 0.8. This is different in an in-
trospective system, where an incorrect failure model can
easily lead to a catastrophic data loss.

Another important parameter to consider is the lease
time. If leases are short, then storage utilization is higher,
since obsolete objects are removed more quickly; on
the other hand, objects have to be refreshed more often.
Clearly, the lease time must exceed both the maximal du-
ration of a large-scale failure and the maximal absence
of a user’s node from the system. In practice, we recom-
mend leases on the order of months. With shorter leases,
users leaving for a long vacation might accidentally lose
some of their data if they keep their machine offline dur-
ing the entire time.

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 14

Security (III)

Durability of an object collection.
A collection of n objects sur-
vives with a probability of

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1

Fr
ag

m
en

ts

Fraction of affected nodes

r=1 (Replication)
r=3
r=5
r=7

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.2 0.4 0.6 0.8 1

S
to

ra
ge

 o
ve

rh
ea

d
fa

ct
or

Fraction of affected nodes

r=1 (Replication)
r=3
r=5
r=7

Figure 3. Number of fragments required for 99.9999% durability, and the resulting storage
overhead.

5 Object aggregation

Glacier achieves data durability using massive redun-
dancy. As a result, the number of internal objects Glacier
must maintain is substantially larger than the number of
application objects stored in Glacier. Each of these inter-
nal objects has a fixed cost; for example, each fragment is
stored together with a manifest, and its key must be sent
to other nodes during maintenance. To mitigate this cost,
Glacier aggregates small application objects in order to
amortize the cost of creating and maintaining fragments
over a sufficient amount of application data.

In Glacier, each user is assumed to access the system
through one node at a time. This node, which we call
the user’s proxy, holds the user’s key material and is the
only node in the system trusted by the user. All objects
are inserted into Glacier from the object owner’s proxy
node. A user can use different proxy nodes at different
times.

When a user inserts objects into Glacier, they are
buffered at the user’s proxy node. To ensure their visibil-
ity at other nodes, the objects are immediately inserted
into Glacier’s primary store, which is not aggregated.
Once enough objects have been gathered or enough time
has passed, the buffered objects are inserted as a single
object into Glacier under an aggregate key. In the case
of a proxy failure while an object is buffered, the next
refresh operation will re-buffer the object for aggrega-
tion. Of course, buffered objects are vulnerable to large-
scale correlated failures. If this is not acceptable, appli-
cations may invoke a flush method for important ob-
jects, which ensures that an aggregate with these objects
is created and immediately stored in Glacier.

The proxy is also responsible for refreshing the
owner’s objects and for consolidating aggregates that
contain too many expired objects. Performing aggre-

gation and aggregate maintenance on a per-user basis
avoids difficult problems due to the lack of trust among
nodes. In return, Glacier foregoes the opportunity to bun-
dle objects from different users in the same aggregate and
to eliminate duplicate objects inserted by different users.
In our experience, this is a small price to pay for the sim-
plicity and robustness Glacier affords.

The proxy maintains a local aggregate directory,
which maps application object keys to the key of the ag-
gregate that contains the object. The directory is used
when an object is refreshed and when an object needs to
be recovered in response to an application request. Af-
ter a failure of the proxy node, the directory needs to be
regenerated from the aggregates. To do so, an owner’s
aggregates are linked in order of their insertion, form-
ing a linked list, such that each aggregate contains the
key of the previously inserted aggregate. The head of
the list is stored in an application-specific object with a
well-known key. To avoid a circularity, this object is not
subject to aggregation in Glacier. The aggregate direc-
tory can be recovered trivially by traversing the list.

A B C D E F

Figure 5. Reference graph. The object la-
beled ‘D’ has expired.

Aggregates are reclaimed in Glacier once all of the
contained objects have expired. However, if aggregates
expire in an order other than their insertion order, the ag-
gregate list might become disconnected. To fix this prob-
lem, aggregates in the linked list may contain references
to multiple other aggregates; thus, the aggregates actu-
ally form a directed acyclic graph (DAG, see Figure 5).

How much storage overhead
do we need for 99.9999%
durability in case of a certain
failure rate at a given code?

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 15

Overview

◆ Classical Concept

◆� Glacier
• � Concept
• � Distribution of data
• � Recovery
• � Environment
• � Security

◆� ePost experiment
� • � Setup

• � Results

◆� Glacier for a Real File Server

◆� Competitors?
• � Academic
• � Commercial/Industrial

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 16

ePost: Setup

ePost
◆ � A cooperative serverless email system.
◆ � 35 nodes.
◆ � 8 active users (use ePost as main mail system).
◆ � 7 passive users (forward all their incoming mail to ePost for storage).

Glacier setup
◆� N = 48 fragments per object.
◆� r = 5 (any five fragments are sufficient for restoring).
→� At fmax=0.6 we get a minimum object durability of D=0.999999.

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140

C
um

ul
at

iv
e

st
or

ag
e

lo
ad

 (M
B

yt
es

)

Time (days)

total
live

Figure 7. Storage load in ePOST.

ror once caused an entire storage cluster of 16 nodes to
become disconnected. Glacier was able to handle all of
these failures. Also, note that Glacier was still under ac-
tive development when it was deployed. During our ex-
periments, we actually found two bugs, which we were
able to fix simply by restarting the nodes with the up-
dated software.

We initially configured Glacier so that it would con-
sider nodes to have failed if they did not join the over-
lay for more than 5 days. However, it turned out that
some of the early ePOST adopters started their nodes
only occasionally, so their regions of key space were re-
peatedly taken over by their peers and their fragments
reconstructed. Nevertheless, we decided to include these
results as well because they show how Glacier responds
to an environment that is heavily dynamic.

7.2 Workload

We first examined the workload generated by ePOST in
our experimental overlay. Figure 7 shows the cumulative
size of all objects inserted over time, as well as the size of
the objects that have not yet expired. Objects are inserted
with an initial lease of one month and are refreshed every
day until they are no longer referenced.

Figure 8 shows a histogram of the object sizes. The
histogram is bimodal, with a high number of small ob-
jects ranging between 1 − 10kB, and a lower number
of large objects. Out of the 274, 857 objects, less than
1% were larger than 600kB (the maximum was 9.1MB);
these are not shown for readability. The small objects
typically contain emails and their headers, which are
stored separately by ePOST, while the large objects con-
tain attachments. Since most objects are small compared
to the fixed-size manifests used by Glacier (about 1kB),
this indicates that aggregation can considerably increase
storage efficiency.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 100 200 300 400 500 600

O
bj

ec
ts

Size (kBytes)

Figure 8. Object sizes in ePOST.

7.3 ePOST storage

Next, we looked at the amount of storage required by
Glacier to store the above workload. Figure 9 shows the
combined size of all fragments in the system. The stor-
age grows slowly, as new email is entering the system; at
the same time, old email and junk mail is deleted by the
users and eventually removed by the garbage collector.

In this deployment, garbage is not physically deleted
but rather moved to a special trash storage, whose size
is also shown. We used a lease time of 30 days for all
objects. For compatibility reasons, ePOST maintains its
on-disk data structures as gzipped XML. On average, this
creates an additional overhead of 32%, which is included
in the figures shown.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120 140

O
ve

ra
ll

st
or

ag
e

(G
by

te
s)

Time (days)

Fragments
Trash

Figure 9. Storage consumed by Glacier
fragments and trash.

Figure 10 compares the size of the on-disk data struc-
tures to the actual email payload. It shows the average
number of bytes Glacier stored for each byte of payload,
excluding trash, but including the 32% overhead from

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 17

ePost: Results (I)

Effective data
The real amount (without overhead) of
ePost data stored using Glacier:

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140

C
um

ul
at

iv
e

st
or

ag
e

lo
ad

 (M
B

yt
es

)

Time (days)

total
live

Figure 7. Storage load in ePOST.

ror once caused an entire storage cluster of 16 nodes to
become disconnected. Glacier was able to handle all of
these failures. Also, note that Glacier was still under ac-
tive development when it was deployed. During our ex-
periments, we actually found two bugs, which we were
able to fix simply by restarting the nodes with the up-
dated software.

We initially configured Glacier so that it would con-
sider nodes to have failed if they did not join the over-
lay for more than 5 days. However, it turned out that
some of the early ePOST adopters started their nodes
only occasionally, so their regions of key space were re-
peatedly taken over by their peers and their fragments
reconstructed. Nevertheless, we decided to include these
results as well because they show how Glacier responds
to an environment that is heavily dynamic.

7.2 Workload

We first examined the workload generated by ePOST in
our experimental overlay. Figure 7 shows the cumulative
size of all objects inserted over time, as well as the size of
the objects that have not yet expired. Objects are inserted
with an initial lease of one month and are refreshed every
day until they are no longer referenced.

Figure 8 shows a histogram of the object sizes. The
histogram is bimodal, with a high number of small ob-
jects ranging between 1 − 10kB, and a lower number
of large objects. Out of the 274, 857 objects, less than
1% were larger than 600kB (the maximum was 9.1MB);
these are not shown for readability. The small objects
typically contain emails and their headers, which are
stored separately by ePOST, while the large objects con-
tain attachments. Since most objects are small compared
to the fixed-size manifests used by Glacier (about 1kB),
this indicates that aggregation can considerably increase
storage efficiency.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 100 200 300 400 500 600

O
bj

ec
ts

Size (kBytes)

Figure 8. Object sizes in ePOST.

7.3 ePOST storage

Next, we looked at the amount of storage required by
Glacier to store the above workload. Figure 9 shows the
combined size of all fragments in the system. The stor-
age grows slowly, as new email is entering the system; at
the same time, old email and junk mail is deleted by the
users and eventually removed by the garbage collector.

In this deployment, garbage is not physically deleted
but rather moved to a special trash storage, whose size
is also shown. We used a lease time of 30 days for all
objects. For compatibility reasons, ePOST maintains its
on-disk data structures as gzipped XML. On average, this
creates an additional overhead of 32%, which is included
in the figures shown.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120 140

O
ve

ra
ll

st
or

ag
e

(G
by

te
s)

Time (days)

Fragments
Trash

Figure 9. Storage consumed by Glacier
fragments and trash.

Figure 10 compares the size of the on-disk data struc-
tures to the actual email payload. It shows the average
number of bytes Glacier stored for each byte of payload,
excluding trash, but including the 32% overhead from

Used storage
The storage consumed by Glacier for
the above displayed real data:

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140

B
yt

es
 p

er
 p

ay
lo

ad
 b

yt
e

Time (days)

Live only
Live+expired

9.6 + 32%

Figure 10. Storage factor, including serial-
ization overhead.

XML serialization, for live data and for all data stored in
Glacier. The average storage overhead over time is very
close to the expected factor of 9.6 plus the 32% due to
XML serialization.

7.4 ePOST traffic

Figure 11 shows the average traffic generated by an
ePOST node in bytes and in Pastry-level messages sent
per minute (the messages are sent over TCP, so small
messages may share a single packet, and large messages
may require multiple packets). For comparison, we also
report traffic statistics for the other subsystems involved
in ePOST, such as PAST and Scribe [11].

The traffic pattern is heavily bimodal. During quiet
periods (e.g. days 30-50), Glacier generally sends fewer
messages than PAST because it can mask short-term
churn, but since the messages are larger because of the
difference in storage factors (9.6 versus 3), the overall
traffic is about the same. In periods with a lot of node
failures (e.g. days 80-120), Glacier must recover the lost
fragments by reconstructing them from other fragments,
which creates additional load for a short time. The in-
crease in Pastry traffic on day 104 was caused by an un-
related change in Pastry’s leaf set stabilization protocol.

The traffic generated by Glacier can be divided into
five categories:

• Insertion: When new objects are inserted, Glacier
identifies the fragment holders and transfers the
fragment payload to them.

• Refresh: When the leases for a set of objects are ex-
tended, Glacier sends the updated part of the storage
manifest to the current fragment holders.

• Maintenance: Peer nodes compare their key lists,

and lost fragments are regenerated from other frag-
ments.

• Handoff: Nodes hand off some of their fragments
to a new node who has taken over part of their key
space.

• Lookup: Aggregates are retrieved when an object is
lost from the object cache, or when small aggregates
are consolidated into larger ones.

In Figure 12, the Glacier traffic is broken down by cat-
egory. In times with a low number of failures, the traffic
is dominated by insertions and refreshes. When the net-
work is unstable, the fraction of handoff and maintenance
traffic increases. In all cases, the maintenance traffic re-
mains below 15 packets per host and minute, which is
very low.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140

P
ac

ke
ts

 p
er

 h
os

t p
er

 m
in

ut
e

Time (days)

Maintenance
Insert
Refresh
Handoff
Lookup

Figure 12. Messages sent by Glacier, by ac-
tivity.

7.5 ePOST aggregation

To determine the effectiveness of aggregation, we also
collected statistics on the number of objects and ag-
gregates in the system. We distinguished between live
objects, whose lease is still valid, and expired objects,
which are still stored as part of an aggregate but are eli-
gible for garbage collection.

Figure 13 shows the average number of objects in
each aggregate. In our system, aggregation reduced the
number of keys by more than an order of magnitude.
Moreover, our results show that the number of expired
objects remains low, which indicates that aggregate con-
solidation is effective.

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 18

ePost: Results (II)

Storage factor

Average overhead factor: 11

 0

 100

 200

 300

 400

 500

 600

 20 40 60 80 100 120 140

D
ai

ly
 tr

af
fic

 (M
B

/n
od

e)

Time (days)

Glacier
PAST

Replication
Pastry
Scribe
POST

 0

 5

 10

 15

 20

 20 40 60 80 100 120 140

Tr
af

fic
 (m

es
sa

ge
s/

m
in

,n
od

e)

Time (days)

Glacier
PAST

Replication
Pastry
Scribe
POST

Figure 11. Average traffic per node and day (left) and average number of messages per node
and minute (right).

 20
 22
 24
 26
 28
 30
 32
 34

 0 20 40 60 80 100 120 140

O
bj

ec
ts

/a
gg

re
ga

te
 (a

vg
.)

Time (days)

Live+expired
Live only

Figure 13. Aggregation factor.

7.6 ePOST recovery

To study Glacier’s behavior in the event of a large-scale
correlated failure, we randomly selected 13 of the 31
nodes in our experimental ePOST overlay and copied
their local fragment store to 13 fresh nodes (note that,
since our overlay has fewer than N = 48 nodes, some
nodes store more than one fragment of the same ob-
ject). The primary PAST store and the metadata were
not copied. We then started a new Pastry overlay with
only these 13 nodes. The resulting situation corresponds
to a 58% failure in the main overlay, which is close to
our assumed fmax = 60%.

We then completely re-installed ePOST on a four-
teenth node and let it join the ring. One of the authors
entered his email address and an approximate date when
he had last used ePOST. From this information, ePOST
first determined the key of its metadata backup in Glacier
by hashing the email address; then it retrieved the backup
and extracted from it the root key of the aggregate DAG.
The aggregation layer then reconstructed the DAG and
restored the objects in it to the primary store. This pro-
cess took approximately one hour to complete but could
be sped up significantly by adding some simple optimiza-

tions. Afterwards, ePOST was again ready for use; all
data that had been stored using Glacier was fully recov-
ered.

7.7 Simulations: Diurnal behavior

For this and the following experiments, we used a trace-
driven simulator that implements Glacier and the aggre-
gation layer. Since we wanted to model a system sim-
ilar to ePOST, we used a trace from our department’s
email server, which contains 395, 350 delivery records
over a period of one week (09/15-09/21). Some email is
carbon-copied to multiple recipients; we delivered each
copy to a separate node, for a total of 1, 107, 504 copies
or approximately 8 GBytes. In the simulation, Glacier
aggregates of up to 100 objects using a simple, greedy
first-fit policy.

In our first simulation, we explore the impact of di-
urnal short-term churn. In their study of a large deploy-
ment of desktop machines, Bolosky et al. [8] report that
the number of available machines, which was generally
around approximately 45, 000, dropped by about 2, 500
(5.5%) at night time and by about 5, 000 (11.1%) dur-
ing weekends. In our simulations, we modeled a ring
of 250 nodes with the behavior from the study, where
M% of the nodes are unavailable between 5pm and 7am
on weekdays and 2M% on weekends. The experiment
was run for one week of simulation time, starting from
Wednesday, 09/15, and the entire trace was used. Glacier
was configured with the maximum offline time Tmax set
to one week.

Figure 14 shows how this behavior affects the total
message overhead, which includes all messages sent over
the entire week, for different values of M . As churn
increases, fewer fragments can be delivered directly to
their respective fragment holders, so insertion traffic de-

500 MB

24 · 3600 s
= 0.00578 MB/s = 0.046296 Mbit/s

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 19

ePost: Results (III)

Network load
The amount of traffic generated
per node and day.
Please note: Between the days
80 and 120 a lot of nodes failed,
therefore a lot of data had to be
transfered.

This traffic is normally quite well
spread over the day because
Glacier limits the maximum
number of file transfers at the
same time:

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 20

ePost: Recovery

«Setup»
◆ � 22 randomly selected nodes were disabled → 13 nodes remaining.

Result
◆� After one our the all the data was recovered and copied on a new primary store.

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 21

Glacier: Conclusions/Open Points

◆ � It is possible to use the workstation storage as an additional backup storage.
◆ � Glacier provides a lot of security in case of large scale failure.
◆ � Glacier works for a limited amount of data and objects (some GB).

But how is it for larger systems with TB of data and a large amount of small objects?

◆ � How does Glacier react on a classical file server situation where a lot of files are
constantly changed?

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 22

Overview

◆ Classical Concept

◆� Glacier
• � Concept
• � Distribution of data
• � Recovery
• � Environment
• � Security

◆� ePost experiment
� • � Setup

• � Results

◆� Glacier for a Real File Server

◆� Competitors?
• � Academic
• � Commercial/Industrial

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 23

Glacier as Backup for a Real File Server (I)

Assumptions
◆ � 1 TB normal user data has to be backuped.
◆ � Average workstation: 100 GB free disk space.

Glacier setup (the same as for ePost)
◆� N = 48 fragments per object.
◆� r = 5 (any five fragments are sufficient for restoring).

Results extrapolated from the ePost results
◆� Storage overhead factor 11 → 11 TB of workstation disk capacity is need
→� at least 110 workstations necessary!
◆� ePost average network load: 0.0463 MBit/s for about 1.5 GB user data
→� average network load for 1 TB user data: 30.9 MBit/s!

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 24

Glacier as Backup for a Real File Server (II)

Mobile office problem
◆� More and more companies are only using laptops → less diskspace, less often

connected to the company network.

Backup verification problem
◆� Splitting
◆� Encryption
→� Verification and extraction of backup data is very difficult. Would you implement it,

if you were responsible?

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 25

Overview

◆ Classical Concept

◆� Glacier
• � Concept
• � Distribution of data
• � Recovery
• � Environment
• � Security

◆� ePost experiment
� • � Setup

• � Results

◆� Glacier for a Real File Server

◆� Competitors?
• � Academic
• � Commercial/Industrial

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 26

Academic Competitors

DISP: Practical, Efficient, Secure and Fault Tolerant Data
Storage for Distributed Systems
◆� Daniel Ellard (Harvard University), James Megquier (Gnuterra Corporation), 2003
◆� Nearly the same concept as Glacier except for the sophisticated fragment placement

concept and primary store.
◆� No real world test results available, but basic tests:

-� Pentium 1.8 GHz, Gigabit Ethernet, FreeBSD 4.8
-� 100 MB data encrypted on disk
→� decryption, SSL encryption for transfer, verification (SHA-1) at receiver
→� Result: about 8 MByte/s

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 27

«Real» Systems

Is there anything?
◆� No system found which uses working clients for backup.

But there are similar systems:
◆� Use of cheap PCs for storage instead of expensive SAN-Systems.
◆� Expensive storage systems are connected to several storage servers which in turn

realize the connection to the workstations.
◆� Main differences to the academic systems presented:

-� Storage PCs/Servers are only used for storage.
-� Dedicated LAN for storage purposes.

HIGH-PERFORMANCE COMPUTING

www.dell.com/powersolutions Reprinted from Dell Power Solutions, February 2005. Copyright © 2005 Dell Inc. All rights reserved. POWER SOLUTIONS 131 131

IBRIX Fusion is a software-based, fully integrated solution com-

prising a scalable parallel file system for clusters, a volume man-

ager, high-availability features such as multicomponent automatic

failover, and a comprehensive management interface that includes a

graphical user interface (GUI) and a command-line interface (CLI).

IBRIX enables enterprises to pull together their I/O and storage

systems into a single environment that is multipurpose and sharable

across a multitude of applications and to manage that environ-

ment through a centralized interface. IBRIX Fusion is designed to

be deployed in environments scaling to thousands of nodes while

achieving linear scalability of aggregate throughput as I/O serving

capacity is added.

Studying I/O performance in Dell HPC clusters

Figure 4 presents configuration details of the storage array used in the

Dell performance study and the deviations from the default configu-

ration settings. Figure 5 describes configuration of the client/server

architecture used for this study.

Figure 6 shows how the clients, servers, and storage array

were networked to form a typical HPC cluster configuration. The

clients in Figure 6 represent the compute nodes shown in Figure 1.

The Dell PowerEdge servers were the I/O nodes, and the CX700

storage array provided the storage. Clients used the IBRIX client

software to access files through the IBRIX segment servers run-

ning on the I/O nodes. The

disks used on the CX700 were

evenly divided among the

array’s eight back-end loops

and equally divided across its

two storage processors.

System performance was

measured using the IOzone

benchmarking tool. One

IOzone process was run on

each client, and the process

accessed one file—all files were

located in a single directory of

the file system. Each process

performed 64 KB sequential

writes and reads. The band-

width results reported by the

IOzone processes were summed up to calculate the total system

bandwidth shown in Figure 7. This method of calculating total

bandwidth results in total bandwidth that is 1 to 2 percent higher

than that reported by the storage system. This difference occurs

because of the variation in bandwidth achieved by the different

IOzone processes.

Figure 7 illustrates the total read and write bandwidth

obtained when a varying number of clients accessed the storage

CX700 storage processor settings Hardware configuration

Array-wide settings Disk drives

Memory: 4 GB per storage processor Eighty 10,000 rpm Fibre Channel drives

Read cache: 1168 MB for storage processor A;
1168 MB for storage processor B

Write cache: 2048 MB

Cache page size: 16 KB

Low watermark: 40

High watermark: 60

Prefetch settings for each LUN LUNs

Prefetch multiplier: 4 16 LUNs (each LUN comprises

Segment multiplier: 4 five drives configured using RAID-3)

Maximum prefetch: 4,096 (in blocks) Element size: 128

CX700 management software

EMC® Navisphere® 6.6

Figure 4. Hardware and software configuration of the storage subsystem used in the Dell performance study

Segment servers (8) Clients (16)

Each Dell PowerEdge 1750 Each Dell PowerEdge 1750

One Intel Xeon processor at 3.06 GHz Two Intel Xeon processors at 3.06 GHzTT

533 MHz FSB 533 MHz FSB

512 MB L2 cache 512 MB L2 cache

2 GB DDR at 266 MHz 2 GB DDR at 266 MHz

Operating system: Red Hat® Enterprise Operating system: Red Hat Enterprise
 Linux® 3, Update 2 Linux 3, Update 2

HBA: QLogic QLA2340 (driver 6.07.02-RH2 File system: IBRIX 1.3
 with SG_SEGMENTS set to 64)

File system: IBRIX 1.3

Figure 5. Hardware and software configuration of the clients and segment servers used in the Dell

performance study

8 PowerEdge 1750 servers

Dell/EMC DS-24M2
Fibre Channel switch

Dell/EMC CX700

Extreme Summit 400-48t
Gigabit Ethernet switch

16 clients

Segment server

Segment server

Figure 6. Cluster configuration used in the Dell performance study

Dell PowerEdge servers,

combined with a Dell/EMC

CX700 storage array and the

optimized IBRIX parallel file

system, can provide a high-

performing, scalable, and

economical cluster solution

for HPC environments.

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 28

Expensive System (I)

Dell high performance storage with IBRIX file system

◆� Clients:
2 x 3 GHz, 2 GB Ram

◆� Segment Servers:
2 x 3 GHz, 2 GB Ram
Fibre channel card

Concept
◆� Segment servers store

the metadata (i.e. where
the files are stored).

◆� IBRIX allows that data
storage is completly
independent of
namespace and file
hierarchy → Excellent
optimization for appli-
cation is possible.

HIGH-PERFORMANCE COMPUTING

POWER SOLUTIONS Reprinted from Dell Power Solutions, February 2005. Copyright © 2005 Dell Inc. All rights reserved. February 200532132

subsystem using one or more segment servers. Four configura-

tions were used to test the scalability of the I/O subsystem—one

segment server serving data to 2 clients, two segment servers

for 4 clients, four segment servers for 8 clients, and eight seg-

ment servers for 16 clients. The I/O read bandwidth ranged from

162 MB/sec for the single segment server to 1123 MB/sec for the

eight segment servers. Similarly, the write bandwidth ranged

from 131 MB/sec to 487 MB/sec for the different configuration

sizes of the cluster.

Figure 8 shows the scalability of the I/O subsystem as the size

of the cluster increased from 2 clients to 16 clients and the number

of segment servers increased from one to eight—maintaining a

2:1 client-to-segment-server ratio. These results show near-linear

scalability of read bandwidth. Write bandwidth scales well for up

to four segment servers, but beyond that, it is limited by overhead

on the CX700 that results from the steps the array takes to provide

data protection (as described in the “An overview of the Dell/EMC

CX700 storage array” section in this article). The CX700 is designed

to ensure that data written to the array (even data written only to

the write cache) will survive any single failure. If I/Os to the array

satisfy certain alignment and size conditions, then the write cache

can be bypassed and systems can achieve higher write bandwidth

than that obtained in this study.

Building a high-performance computing cluster

with Dell systems

The Dell HPCC team used a Dell/EMC storage array and the IBRIX

file system to help evaluate the performance scalability of an I/O

subsystem for a commonly used HPC cluster scenario. The findings

of this study indicate that Dell PowerEdge servers, combined with

a Dell/EMC CX700 storage array and the optimized IBRIX parallel

file system, can provide a high-performing, scalable, and economical

cluster solution for HPC environments.

Acknowledgments

The authors would like to thank the Dell HPCC team and Thomas

Eastham, Mike Wolak, and Wayne Paquette from IBRIX Inc. for their

immense help in writing this article.

Amina Saify is a member of the Scalable Systems Group at Dell. Amina has a bachelor’s

degree in Computer Science from Devi Ahilya University (DAVV) in India, and a master’s degree

in Computer and Information Science from The Ohio State University.

Ramesh Radhakrishnan, Ph.D., is a systems engineer on the Dell HPCC team. His

areas of interest are computer architecture and performance analysis. Ramesh has a Ph.D.

in Computer Engineering from The University of Texas at Austin.

Sudhir Srinivasan, Ph.D., is the chief technology officer of IBRIX Inc. His interests include

storage systems, operating systems, and distributed computing. He has a Ph.D. in Computer

Science from the University of Virginia.

Onur Celebioglu is an engineering manager in the Scalable Systems Group at Dell and is

responsible for developing HPC clustering products. His current areas of focus are network-

ing and HPC interconnects. Onur has an M.S. in Electrical and Computer Engineering from

Carnegie Mellon University.

8

7

6

5

4

3

2

1

0

S
ca

la
bi

lit
y

(r
el

at
iv

e
pe

rf
or

m
an

ce
)

0 1 2 3 4 5 6 7 8

Number of segment servers (2 clients per server)

Write bandwidth

Read bandwidth

Figure 8. Performance scalability of the I/O subsystem

FOR MORE INFORMATION

Dell HPC clusters:

www.dell.com/hpcc

1200

1000

800

600

400

200

0

B
an

dw
id

th
 (

M
B

/
se

c)

1/2 2/4 4/8 8/16

Number of segment servers/number of clients

131

250

319

1123

Write bandwidth

Read bandwidth

162

445

626

487

Figure 7. Measured bandwidth for the I/O subsystem using IOzone
ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 29

Expensive System (II)

The amount of data transfered between clients and storage:

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 30

Expensive System (III)

What about safety?
◆ � Up to 240 disks in storage units combined to RAID-1, RAID-3, RAID-5 or RAID-10

disk groups.
◆ � Certified server disks
◆ � Verification of written data independently by two processors.
◆ � Large caches with batteries to write cache to dedicated RAID-5 protected disks in case

of complete power failure.
◆ � «Normal» features like hot swappable power supplies, disks, storage processors etc.

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 31

Lustre (I)

A Scalable, High-Performance File System
◆� Developed and maintained by Cluster File Systems, Inc
◆� Open source (GPL)
◆� OS: Several Linux distributions
◆� Hardware platforms: IA-32, IA-64, X86-64, PPC
◆� Networking: TCP/IP, InfiBand and others

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 32

Lustre (II)

Concept
Seperation of
◆� Workstations accessing data
◆� Meta Data Servers (MDS) storing filesystem metadata
◆� Object Storage Servers (OSS) storing actual data

Clients (up to 10’000s) Object Storage Servers
(OSS) (up to 100’s)

Meta Data Servers (MDS)
(at least two)

Gigabebit Ethernet

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 33

Lustre (II)

Performance
Example: Tungsten Supercomputer at the National Center for Supercomputing
Applications (NCSA) at the University of Illinois:
◆� 104 Object Storage Servers
◆� 120 TB storage
◆� Over 11.1 Gigabyte/s I/O throughput using Lustre

Security
◆� Automatic failover for Meta Data Servers
◆� Replication of data accross several Object Storage Servers

including automatic failover for read and write access
◆� Possibility to integrate Kerberos authentication and encrypted data transfer

ETH Zurich, Seminar in Distributed Computing: Glacier

David Scheiner

2005/12/14 – 34

Lustre (III)

A possible realization
(not as fast as at NCSA):
PetaBox TB80
◆� 40 nodes, each with 2 TB storage,

1 GHz CPU, Gigabit Ethernet
◆� Gigabit Ethernet Switch: 48 Ports
◆� Only 3.2 KW power needed (ecological computing)
◆� about USD 2000 per Terabyte, all inclusive

(disks, CPU, board, networking, rack, cooling).
→� USD 160’000 for 80 TB

