
DOI: 10.1007/s00224-004-1080-z

Theory Comput. Systems 37, 585–607 (2004) Theory of
Computing

Systems
© 2004 Springer-Verlag

New York, LLC

Compact Routing Schemes for Dynamic Ring Networks∗

Danny Krizanc,1 Flaminia L. Luccio,2 and Rajeev Raman3

1Mathematics Department, Wesleyan University,
Middletown, CT 06459, USA
dkrizanc@wesleyan.edu

2Dipartimento di Scienze Matematiche, Università degli Studi di Trieste,
34127 Trieste, Italy
luccio@dsm.univ.trieste.it

3Department of Mathematics and Computer Science, University of Leicester,
Leicester LE1 7RH, England
R.Raman@mcs.le.ac.uk

Abstract. We consider the problem of routing in an asynchronous dynamically
changing ring of processors using schemes that minimize the storage space for the
routing information. In general, applying static techniques to a dynamic network
would require significant re-computation. Moreover, the known dynamic techniques
applied to the ring lead to inefficient schemes. In this paper we introduce a new
technique, Dynamic Interval Routing, and we show tradeoffs between the stretch
factor, the adaptation cost, and the size of the update messages used by routing
schemes based upon it. We give three algorithms for rings of maximum size N :
the first two are deterministic, one with adaptation cost zero but worst case stretch
factor �N/2�, the other with worst case adaptation cost O(N) update messages of
O(log N) bits and stretch factor 1. The third algorithm is randomized, uses update
messages of size O(k log N), has adaptation cost O(k), and expected stretch factor
1+ 1/k, for any integer k ≥ 3. All schemes require O(log N) bits per node for the
routing information and all messages headers are of O(log N) bits.

∗ This research was supported by an NSERC grant and by MIUR progetto “Matematica per le scienze e la
tecnologia” Università di Trieste. Rajeev Raman’s work was supported in part by EPSRC Grant GR/L92150. A
preliminary version of this paper was presented at the IEEE 13th International Parallel Processing Symposium
and 10th Symposium on Parallel and Distributed Processing (IPPS/SPDP ’99) [17].

586 D. Krizanc, F. L. Luccio, and R. Raman

1. Introduction

The design of routing schemes that minimize the space devoted to routing tables in a
network is an active area of research [3], [7], [10]–[16], [18]–[21]. Most of the research
done in this area has concerned static networks and has focused on the tradeoffs between
the space required for routing tables and the quality of the routing paths the tables defined.
In general, to apply such static compact routing techniques to a dynamic network it would
be necessary to perform a global re-computation of all the routing tables in the network.
A much better approach is to consider schemes that require only a limited number of
table updates (in the worst case or in an amortized sense) whenever a change occurs in
the network [1], [2], [4]–[6], [8], [9].

A static routing scheme is composed of distributed routing tables (one at each node)
and a routing procedure which uses the routing tables to perform the message delivery.
A dynamic routing scheme consists also of a distributed update procedure which updates
the routing tables whenever a change occurs in the network. In this paper we assume
the changes include processors going off-line or coming on-line, in a fault-free manner,
as is the case when, e.g., users are logging in or out, processors are being taken off-line
for maintenance, new processors are being added to the network, etc. (In particular,
we assume that processors going off-line complete the update procedure first.) In the
worst case a single change may require that all the routing tables in the network have to
be updated. It is desirable to design dynamic routing schemes that limit the amount of
updating that must occur per change. We are interested in finding tradeoffs between the
length of the routing paths, the space requirements of the routing tables, and the worst
case or amortized number of messages exchanged per topology change, for dynamic
routing schemes.

An important example of static routing schemes are k-Interval Routing Schemes
(k-IRSs) [18], [21]: In an N node network, every node is labeled with a different value
in the set {0, . . . , N − 1}; every arc ei leaving a node i is assigned a set of at most k
disjoint intervals [al

i , bl
i], l = 1, . . . , s, s ≤ k, such that al

i , bl
i ∈ {0, . . . , N − 1} and

such that every node in G is in precisely one of the intervals assigned to an arc leaving i .
Messages from i to j are forwarded through the arc labeled with the interval containing
j . Interval routing schemes are an example of compact routing schemes. Note that the
space required to store the routing table of a single node for a k-IRS is O(kd log N) bits
where d is the degree of the node. For small k and d this is a significant saving over the
complete table which requires O(N log d) bits per node in the worst case.

As an example of a dynamic routing scheme we introduce Dynamic Interval Routing
Schemes (DIRSs). A DIRS for a network with maximum size N is based on the 1-IRSs
(shortly IRSs): nodes are labeled by distinct values in the set {0, . . . , N −1} and arcs are
labeled by disjoint intervals of values in the same set. However, not all of the processors
may be on-line at all times, i.e., intervals may contain the label of processors that are not
on-line. As changes may occur in the network, an update procedure is defined in order to
modify the routing tables dynamically, i.e., the range of the intervals assigned to the arcs.

We require the following definitions. A processor is said to be pending if it has come
on-line or is going off-line but has not yet completed the update procedure associated
with the change it has caused in the network. After completing the update, the processor
is said to be active if it comes on-line and non-active if it goes off-line. We say that

Compact Routing Schemes for Dynamic Ring Networks 587

the system has reached quiescence if there are no topological updates pending, i.e., all
processors are either active or non-active (see [1]).

We say that the system delivers all messages correctly if:

1. A message travels only a bounded number of steps.
2. A receiver receives a message if it is active during the entire lifetime of the

message.

We assume that the communication between two neighboring processors that are active
or pending has cost 1. We consider the following complexity measures:

1. The space complexity for the routing scheme, i.e., the maximum number of bits
stored in each processor for the routing information during the quiescent state.

2. The update message size, i.e., the size of the update messages in bits.
3. The adaptation cost, i.e., the number of update messages generated per insertion

and deletion of processors (this cost is worst case or amortized over the number
of processors that go on-line and off-line in the system).

4. The stretch factor for the routing scheme, i.e., the maximum ratio between the
length of the routing path between any two active processors and the length
of a shortest path between them. The stretch factor is computed only when
the destination processor is active and when the system has reached a state of
quiescence, otherwise it can trivially be shown to be �(N) [1].

In this paper we consider the problem of routing on an asynchronous bidirectional
dynamically changing ring of processors with FIFO queues and with global orientation
(i.e., all processors agree on the left and right direction).

Specifically, we assume that the ring has N switches, numbered consecutively
{0, . . . , N − 1} in clockwise order, with switch i connected to switches numbered
(i − 1) mod N and (i + 1) mod N . There are N processors as well, each of which
is associated with exactly one switch. The label of a processor is simply the number of
the switch with which it is associated. Messages move between switches: If a switch is
open the associated processor is non-active and messages pass through at no cost. If a
switch is closed the associated processor is either active or pending and all messages
are delivered to the processor for processing. (See Figure 1.) Each processor knows the
topology of the network, the value N , and its own label, but must explicitly acquire
information about the status of the other processors in the network (i.e., whether they
are active, inactive, or pending).

In order to ensure correctness, and more precisely to ensure that messages travel
only a bounded number of steps, we assume that there is a unique processor, without
loss of generality, the one labeled with value 0, that is always active (see details given
later). We use n to denote the number of active and pending processors at any particular
time, i.e., n is the effective size of the ring. This model captures the common star-shaped
ring Local Area Network (LAN) topology in which all connections pass through a wire
center as well as rings consisting of virtual links in optical networks [22].

Below we describe three different DIRSs for the ring network which show a tradeoff
between the stretch factor, the adaption cost, and the size of the update messages. The
first two algorithms are deterministic, one with adaptation cost zero but worst case stretch
factor �N/2�, the other with worst case adaptation cost O(N)messages of O(log N) bits

588 D. Krizanc, F. L. Luccio, and R. Raman

7

0

1

2

3

4

5

6

open switch

processor off−line

closed switch

processor on−line

connection always up

Fig. 1. Switches on and off. Here N = 8 and n = 5.

but with stretch factor 1. The third algorithm is randomized and has expected amortized
adaptation cost O(k) with messages of size O(k log N) and expected stretch factor
1 + 1/k, for any integer k ≥ 3. All of our schemes use only O(log N) bits per node
to store routing table information and require the message headers to contain at most
O(log N) bits.

Regarding the space complexity note that, as in the study of compact routing
schemes, the space considered is only that related to the routing scheme, i.e., to the
storage of the routing table. In order to speed up routing table look ups, we assume that
each table is stored in a cache memory inside the router. We also make the assumption
that all of the storage required by the update procedure relies on a different level of
storage (either in the router or in the processor itself).

To the best of our knowledge these are the first dynamic routing schemes derived for
the above model of the ring. Previous work on dynamic routing has concentrated on other
classes of networks such as dynamically growing trees [1] or on general networks [2], [5],
[6], [9]. The results on general networks are mostly based upon spanning trees and cluster
techniques. When applied to the ring the best of them require polylogarithmic adaptation
cost and message size and result in schemes with a polylogarithmic stretch factor.

2. DIRS with Adaptation Cost Zero

In this section we describe a DIRS that has adaptation cost zero (i.e., requires no messages
to be sent when processors go on-line or off-line) but has stretch factor min{n−1, �N/2�},

Compact Routing Schemes for Dynamic Ring Networks 589

where n is the effective size of the ring. The results of this section are pretty straightfor-
ward but are fundamental for understanding the background and the problems that will
be faced and solved in the next sections.

We assume the classical node and arc labeling of the IRS for a ring of size N
[18], [21]. Every node i is labeled with some unique integer in the set {0, . . . , N − 1}.
Moreover it has two arcs leaving: li , the left one in a clockwise orientation of the
ring, and ri , the right one. The (possibly wrapped-around) interval associated to li is
[i + 1 mod N , �i + N/2� mod N] and to ri is [�i + 1+ N/2� mod N , i − 1 mod N].
Hence every message destined by i to a node j �= i in the ring is unambiguously sent
either through li or through ri , as j is exactly contained in either the interval associated
to li or to ri . As an example consider Figure 1 and the intervals associated to node
0, i.e., [5, 7] to ri and [1, 4] to li . A message from 0 to 2 is therefore sent through
arc l0.

In the DIRS the data message is in the form M = (D, r, s, x) where D is the
information to be exchanged, r is the name of the receiver, s is the name of the sender,
and x is a value that denotes the number of times M has passed in front of processor 0
(which is always active).

The DIRS consists of an Update and a Routing procedure. The Update procedure
(Algorithm 1 in the Appendix) is executed by a non-active processor that wants to go
on-line. It consists of getting a fixed label i (line 1), and then of using the classical optimal
stretch IRS, i.e., i associates the fixed interval [i + 1 mod N , �i + N/2� mod N] to the
left arc (line 2) and the interval [�i+1+ N/2� mod N , i−1 mod N] to the the right arc
(line 3) and then becomes active (line 4). Note that no action is required of a processor
going off-line. The Routing procedure (Algorithm 2 in the Appendix) is executed by
every active processor. When a processor i wants to send a data message to another
processor j , it behaves as in the classical optimal stretch IRS, i.e., it checks if the value
j is in the interval of the left or right arc and sends it through it (lines 2–7). Moreover,
it sets x := 0. Note that x is increased by one every time the message passes in front of
processor 0 (line 9). An active processor i may also receive a message M = (D, r, s, x)
(line 8). If r = i , i.e., i is the destination, then M is processed (line 15); otherwise
if M comes from the left (right) and r ∈ [i + 1 mod N , s − 1 mod N] (respectively
r ∈ [s+ 1 mod N , i − 1 mod N]), then M is killed as the destination went off-line (line
13); the same holds if x = 2, as in this case M has passed in front of processor 0 twice.
In all other cases M is forwarded to the opposite direction (lines 10-12).

Theorem 1. The DIRS defined by Algorithms 1 and 2 is correct and has the following
properties:

(1) the space required for the routing tables is at most O(log N) bits per node;
(2) the adaptation cost is zero (i.e., no update messages are sent);
(3) the stretch factor is at most min{n − 1, �N/2�}.

Proof. Consider the case in which a receiver j is active during the lifetime of the
message M . In this case the DIRS behaves as a normal IRS in a static ring, therefore M
is correctly delivered to j . Note also that every processor that goes on-line has a fixed
label and the arc labeling is the one of the classical ring IRS. If j is non-active M is

590 D. Krizanc, F. L. Luccio, and R. Raman

killed by the next active processor in the ring. Note that processor 0 is always active and
kills messages that have passed in front of it twice, i.e., with x = 2.

The space complexity is O(log N) bits since every processor stores the value N ,
its own label, and at most two intervals of O(log N) bits, one for each out-going arc.
No update messages are sent and therefore the adaptation cost is zero. To compute the
stretch factor observe that no matter which sequence of changes occurs in the network
(processors going on-line or off-line), the longest path a message from i has to travel
is to go to processor j = �i + N/2� mod N . This trivially implies that at any time
the stretch factor can be at most (�i + N/2− i� mod N)/1 = �N/2� since a message
always travels in the same direction and since at most �N/2� processors can be active
along that path. Finally observe that �N/2� may be at most n − 1, therefore the stretch
factor is at most min{n − 1, �N/2�}.

3. Scheme with Linear Adaptation Cost

In this section we describe a DIRS that at quiescence routes with stretch factor 1 and
requires O(log N) bits of space on each processor. For any change to the network (proces-
sors going on-line or off-line) between two quiescent states, the worst case adaptation
cost is O(n) update messages of O(log N) bits where n is the maximum number of
processors that are active or pending between these two states.

3.1. The Algorithm

As we have explained in the previous section, routing can be easily accomplished if
every node i sends messages to the left or to the right only, depending on the destination
value and on the fixed intervals associated to the arcs leaving i . The loss though is on
the stretch factor of the routing path which is �N/2� in the worst case. In this section
we introduce a new routing scheme (still based on IRS) which drastically improves on
the previous stretch factor by allowing a dynamical update of the intervals of the arcs
leaving i . Informally, every such interval will on one side be delimited by the value of
the processor which is precisely opposite to i (we call it op(i)), i.e., the number of active
or pending processors on the left and on the right paths from i to op(i) is equal to within
1. All this is accomplished by ensuring that whenever a change occurs in the network,
i.e., when a processor z goes on/off-line, z starts an update phase in which the opposite
values of all processors in the ring are dynamically updated.

The algorithm is divided into a Routing procedure and an Update procedure. The
Routing procedure (Algorithm 3 in the Appendix) is very similar to Algorithm 2. Infor-
mally, the main differences are that the interval associated to every arc leaving a node i
now contains a dynamically changing value op(i) (in Algorithm 2 this value was fixed)
and that pending processors may only receive and forward messages (in Algorithm 2
a processor coming on-line instantaneously becomes active, i.e., there are no pending
processors).

In more detail, an active processor s that wants to send to a processor r a data message
M = (D, r, s, x) containing the information D, first sets x to zero and then checks if
s+1 ≤ r ≤ op(s) (line 11) and if this holds then it sends the message to the left (line 12),

Compact Routing Schemes for Dynamic Ring Networks 591

else to the right (line 13). (The computations are done mod N .) Every active processor i
that receives the data message M = (D, r, s, x) (line 15) either processes it (if i = r , line
22) or forwards it (line 19) unless it finds out that the destination processor r went off-line
(i.e., if x = 2 or if M comes from the left (right) and r ∈ [i + 1 mod N , s − 1 mod N]
(respectively r ∈ [s + 1 mod N , i − 1 mod N]); check done in lines 17–18), and in this
case it kills the message (line 20). Also in this scheme processor 0 increases the value
x (line 16). Every pending processor i either forwards the data message (line 5) or kills
it (line 6) if the destination went off-line or if r = i , i.e., i is the receiver (this check
is done in lines 3–4). As an example consider Figure 1. Here n = 5 and the intervals
associated to node 0 are [5, 7] to r0 and [1, 4] to l0, (i.e., op(0) = 4), as there are two
processors on-line both on the left path from 0 to 4 and on the right path from 0 to 5. A
message from 0 to 2 is thus sent through arc l0.

The update strategy (Algorithm 4 in the Appendix) is more complicated and is
divided into three phases. We discuss the case where a processor goes on-line in detail.
The case where a processor goes off-line is handled similarly. Recall that a pending
processor cannot go off-line, i.e., it must first complete its update procedure.

Informally, whenever a processor wants to go on-line it becomes pending and gets
its (fixed) label. For simplicity, let us first assume that a single processor, e.g., i goes
on-line. Trivially, in this case the new (exact) opposite value that will have to be stored
by each processor will either remain unchanged or will become the old opposite value
of its right or left neighbor. All this will depend on the new oddness or evenness of the
number n of processors in the ring and on the interval i belongs to. To obtain such an
update, processor i has to start sending messages so that every processor may collect
the values of its right and left neighbors together with their opposite values. The last
thing to observe is that when more than one processor goes on-line the updates have to
be sequentialized. This is realized by dividing the update into different phases and by
letting only messages related to the update started by the processor with the maximal
label and in the highest phase go through and temporarily stopping and buffering all
other messages.

In more detail, every processor i that goes on-line becomes pending and gets its
fixed label i (line 2). It then sends a Phase 1 message (with values initialized to −1,
line 4) in the direction of the orientation (e.g., to the left). This message collects the
value of the left and right neighbors of i (called li and r i , respectively), their opposite
values (op(li) and op(r i), respectively), and their actual knowledge on the oddness or
evenness of the ring (even(li) and even(ri), where even(x) = 1 if x knows n is even, 0
otherwise). If i gets the message back (line 28) it moves to the next phase since it has
won a “race” and it is the only processor going to the next phase. The mechanism used
to win the race is simple: if a processor in Phase 1 receives an updated message started
by some other processor it lets it through only if the sender’s label is bigger (lines 7–9
and 11) or if the sender is in a higher phase (lines 13–26). Every processor in a higher
phase stops and buffers in a FIFO queue Phase 1 messages (lines 55 and 72). Therefore a
unique processor (the one with the maximal label among pending processors) may move
to Phase 2 (and consequently to Phase 3).

We assume i is the unique processor that receives back its Phase 1 message. If
necessary (i.e., only if some of the values have not been set yet, see lines 30–39), it
updates the values of the variables it has just collected, i.e., li , ri , op(li), op(ri), even(li)

592 D. Krizanc, F. L. Luccio, and R. Raman

and even(ri). It then computes its new opposite value op(i). This is done, without loss
of generality, by considering even(ri) (lines 40–41) and by setting op(i) to op(ri) if
even(ri) = 1, i.e., if the old ring had an even number of processors or vice versa to
op(li). The variable even(i) is also set to the value opposite to even(ri) as the new
evenness of the ring has to be changed and updated (lines 40–46).

At the very end of the algorithm, every processor j has to contain consistent and
exact information on j , op(j), even(j), lj , op(lj), even(lj), rj , op(rj), and even(rj).
Therefore, the aim of Phases 2 and 3 is now to propagate the update from i to the
remaining processors. Moreover, to be consistent, i will also have to update its right and
left opposite values (op(ri) and op(li)), as they may change during these new phases.

More precisely, the Phase 2 message first has the aim of updating the opposite value
of each processor, which may either remain the same or become the opposite value of
the right or left neighbor depending on the new oddness or evenness of the ring (lines
110–118 and 123–131). Moreover both Phase 2 and 3 messages are used (one for each
direction) for the update on every processor of the left and right values, their related
opposite and evenness values.

All this is done by sending messages containing the name of the local processor i , its
opposite op(i) and evenness even(i) values (lines 47–53 and 66–70), and by dynamically
updating it. In other words, if a message is sent to the right, j , the next processor receiving
it, will set its local variables rj to i , op(rj) to op(i), and even(rj) to even(i) (lines 105–109
and 136–140), and will forward a message containing j , op(j), and even(j) (lines 133
and 150).

When i completes Phase 3 it becomes active, updates all the buffered messages,
and lets them through. In this way the blocked updates may proceed (lines 87–89). This
mechanism essentially sequentializes all insertions.

3.2. Algorithm Analysis

Theorem 2. LetD be the DIRS defined by Algorithms 3 and 4, together with the appro-
priate procedure for going off-line. Then D is correct and has the following properties:

(1) the stretch factor is 1;
(2) the space required for the routing tables is at most O(log N) bits per node;
(3) the worst case adaption cost of any change to the network between two quiescent

states is O(n) messages of O(log N) bits each, where n is the maximum number
of processors that are active or pending between these two states.

Proof. The general correctness of the Routing procedure derives from the fact that the
DIRSs are based on the classical IRSs. If the receiver r is not on-line, then there exists a
pending or an active processor (the one immediately after r ’s position) that by looking at
the side the message comes from, and at the sender’s label, will realize r went off-line. In
any case processor 0 is always active. On the other hand, if r is on-line it will eventually
receive the message and in the case where it is pending it will kill it. Therefore all data
messages are delivered correctly. Since no pending processor can go off-line without
completing its update procedure, update messages are all eventually delivered.

To show that the Update procedure is correct it is sufficient to show that (i) at most
one processor enters Phase 2 at a time, (ii) all pending processors eventually enter Phase 2

Compact Routing Schemes for Dynamic Ring Networks 593

(and thereafter Phase 3 and complete their update), and (iii) at the completion of Phase 3
of an update the routing tables of all active processors are correct (ignoring pending
processors).

Proof of (i). We assume by contradiction that at least two processors x and y enter
Phase 2. If this is the case it means that both have completed Phase 1, therefore they
both got their values back. Without loss of generality, we assume x < y. If this is the
case, then the message from y could have passed in front of x but the message from x
could not (since it found a processor in the same phase but with a bigger value therefore
it had to stop), therefore it passed by before y got up. If this is the case, then x got
into Phase 2 before the message for y passed by, and therefore this message must have
stopped and must have been stored in x’s FIFO queue, therefore yielding a contradiction.
Symmetrically if y < x only one processor wins. Moreover, only processors in Phase
2 can move to Phase 3. This can be generalized to many pending processors therefore
messages either stop at a processor in Phase 2 or 3 or at others in Phase 1 that have bigger
values. When the processor has completed the update it removes buffered messages (that
can only be of processors in Phase 1). A new “race” can then start. Also observe that
if at least one other processor sent a Phase 1 message then i contains at least one other
processor’s Phase 1 message in its buffer, i.e., new updates can start.

Proof of (ii). A pending processor eventually sends a Phase 1 message. All Phase 1
messages travel around the ring in a single direction through FIFO queues. A Phase 1
message can be blocked by either a processor in Phase 2 or 3 or by another Phase 1
processor with a higher identity. In the first case the message is unblocked and makes
progress as soon as the blocking processor completes its Phase 3. In the second case the
Phase 1 blocking processor eventually enters Phase 2 and then 3, and the message makes
progress. If not, it must be the case that a cycle of messages blocked by a processor’s
Phase 1 message exists but this cannot occur since the message from the Phase 1 processor
with the highest identity always makes progress.

Proof of (iii). We now show that the routing tables of active processors are correct
at the completion of an update. Assume that a processor i wakes up and sends a Phase 1
message M around. If it is the only pending or largest identity processor it will receive
back the correct values of its right and left neighbor since no other processor is in Phase 2
or 3. On the other hand, let us assume that M gets to another pending processor j with a
bigger value. M will stop at j and i will eventually get it after j’s update, but the correct
values of its neighbors might have changed in the meantime. On the other hand, every time
a processor starts Phase 2 and 3 it updates the values of any active or pending processors
x in the ring, i.e., the value op(x) of the opposite processor, the values r x , l x of the right
and left active neighbors and op(r x), op(l x) their opposite values, respectively, and the
evenness values even(x), even(r x), and even(l x). Therefore i will have its values updated.
Note that Phases 2 and 3 have to be sequentialized as in Phase 2 every processor updates
its opposite value and therefore a Phase 3 message passing by earlier would collect a
wrong value. The same holds if other updates start before i gets its Phase 1 message
back, and the temporary variables will be replaced if necessary. Therefore at the end i
will be able to choose between old and new values if there are any and therefore it will
be able to take into account all the updates that took place in the meantime.

We are now ready to show points (1)–(3) in the statement of the theorem, namely:
(1) the stretch factor is 1; (2) the space required for the routing tables is at most O(log N)

594 D. Krizanc, F. L. Luccio, and R. Raman

bits; and (3) the amortized adaptation cost per update is O(n) messages of O(log N)
bits.

Proof of (1). This follows immediately from point (iii) above. If at the end of each
update the opposite values are correct and the system reaches quiescence, then the stretch
factor is obviously 1.

Proof of (2). The space complexity is straightforward since every processor stores
a constant number of values of at most O(log N) bits each.

Proof of (3). Every processor that goes on/off-line generates at most O(n)messages
since the update consists of three phases in each of which the size of the ring is at most
n (as this update occurs during two quiescent states). Messages are O(log N) bits each.
Therefore the worst case adaption cost of any change to the network is O(n) messages
of O(log N) bits each.

Finally note that if the system runs synchronously the worst case time complexity
of the algorithm, computed between two quiescent states, is O(mn) steps, where m
is the number of changes occurring between these two states and n is the maximum
number of active or pending processors. The worst case occurs when all m updates are
sequentialized as in this case each single update requires O(n) steps.

4. Scheme with Constant Expected Adaptation Cost

In this section we describe a randomized DIRS that at quiescence routes with expected
stretch factor 1 + 1/k and requires an expected amortized O(k) messages containing
O(k log N) bits each for each change in the ring, for any integer k ≥ 3. If k is chosen to
be constant the expected adaptation cost is then constant with update messages of size
O(log N). Achieving a smaller expected stretch factor is possible but this requires more
messages of larger size.

4.1. The Algorithm

The routing scheme we use is again based upon the classical optimal stretch IRS for
the ring. Every node i assigns to the left arc the interval [(i + 1) mod N , op(i)] and to
the right arc [op(i) + 1 mod N , (i − 1) mod N], where op(i) is an estimate of i’s true
opposite value accurate to within a factor of approximately 1/k. This value is updated
with probability proportional to an estimate of the number of active processors in the ring
by sending a constant number of messages of size O(k log N) all the way around the ring.
The probability is chosen so that the expected adaptation cost is O(k) and the expected
stretch factor is less than 1+ 1/k. We discuss the case where a processor goes on-line in
detail. The case where a processor goes off-line is analogous and is only sketched below.
Recall that a pending processor cannot go off-line, i.e., it must first complete its update
procedure.

The DIRS consists of two different algorithms: one used to route messages and one
used for the update. The Routing procedure is the same as for the linear adaptation cost
algorithm (see also Algorithm 3 in the Appendix) with the only difference that in this
case op(i) is an estimate of i’s true opposite value.

Compact Routing Schemes for Dynamic Ring Networks 595

The Update procedure (Algorithm 5 in the Appendix) is more complicated. Infor-
mally, the general idea is that at every instant processors store opposite values which
may not be perfectly accurate. Exact opposite values are recomputed only after a certain
number of network changes, i.e., pending processors flip coins to decide whether or not
to start a new update. This obviously implies that that the stretch factor may not always
be 1, but still is very small, and that the amortized cost of the updates is not too high. The
update strategy is again divided into three phases, and all updates are sequentialized by
using a mechanism similar to the one presented for Algorithm 4. In Phase 1 a processor
computes the number of on-line processors, in Phase 2 it collects a subset of their labels
(roughly equally spaced among the on-line processors), and finally in Phase 3 it sends
these values around the ring so that every processor can compute from them its new
opposite value.

More formally, every pending processor i has to do the following things (see Algo-
rithm 5 in the Appendix): it sends a message R = (1, i) to the next active processor on
the left. The first active processor j receiving R, knows from the value 1 it is a request
for its n and opposite values (lines 4–5 and 102). Processor j replies sending to the
right an answer message A = (2, i, j, n, op(j)) that contains the requested values n and
op(j) and the label 2 to state it is an answering message (lines 102–103). Processor i
waits for this message, and stores the received values (lines 33–34). It then flips a coin
with probability of heads equal to min{1, 10k/n} (line 37). If it gets a tail it replies to
all buffered messages and it becomes active (lines 97–99). Otherwise, it starts an update
similar to that of Algorithm 4 by sending a Phase 1 message U1 = (3, n0, n1, i) that
contains the value 3 to state is a Phase 1 message, a counter n0 for the number of active
processors in Phase 1, n1 for the ones pending during Phase 1 (both initialized to 0), and
its name i (lines 39–40). The counters are increased by the receiving processors. Note
that update messages are always forwarded in the same direction they come from, as in
Algorithm 4.

Consider what happens when a single processor starts an update. In this case it gets
back the Phase 1 message U1 containing the number of active processors, n0, and pending
processors, n1, i.e., i’s new estimate on n is now n0+n1, it then sends a Phase 2 message
U2 = (4, �(n0 + n1)/10k�, d, V, i) that contains a value 4 to state it is a Phase 2 message,
a value �(n0 + n1)/10k� that defines the intervals of values to take, a counter d (initialized
to 0), a vector V of processors labels (initially containing i), and its value i (line 70).
Message U2 (line 70) globally collects (n0 + n1)/�(n0 + n1)/10k�� processor labels of
nodes that are active or pending during Phase 1. This is obtained by storing in U2 the value
�(n0 + n1)/10k�, and by adding a counter d, that is increased only by processors that
are on-line during Phase 1 (lines 54–61 and 118–123). When d = �(n0 + n1)/10k� − 1
the receiving processor adds its label to U2 and sets d := 0 (lines 55–56 and 119–120).
Finally during Phase 3, i sends an update message U3 = (5, n, V, i) that contains a value
5 indicating it is a Phase 3 message, its n value, the vector V containing the labels it
gathered in Phase 2, and its label i (line 82). Whenever an active or pending processor
j receives a U3 message, it updates its op(j) and n values (lines 21–26, 62–67, and
124–129). A pending processor awaiting an answer A message (i.e., values op(j) and
n of its left active neighbor) that receives a Phase 1 message (lines 7–10) is counted in
n1 and gets activated at the end of Phase 3 without flipping a coin (i.e., its values will
be updated by some other processor going on-line). A pending processor awaiting an

596 D. Krizanc, F. L. Luccio, and R. Raman

answer A message that receives a Phase 2 (lines 17–20) or Phase 3 (lines 21–26) message
waits until the completion of the update at which point it will have collected the new n
and opposite value and it will flip a coin (lines 36–37) and eventually start a new update
if the result is heads (39–99). Whenever it receives its A message it kills it (lines 42–43).

The case in which more than one processor sends a Phase 1 message is solved using
an ordering of the requests based on the largest label value as in Algorithm 4. In this
case the update performed by the “winning” processor acts as an update for all the other
processors that entered Phase 1 and it is not necessary for them to continue to Phases 2
and 3 (lines 48–53).

The procedure for a processor i going off-line is analogous to the above. Processor i
flips a coin with probability min{1, 10k/n} of heads (where n is the most recent estimate
of the size of the ring). If it gets a tail it goes off-line. Otherwise, it begins an update
procedure as before. Phase 1 counts the active and pending processors. Assuming i
moves to Phase 2, processor labels are collected and in Phase 3, the opposite values
of active and pending (during Phase 1) processors are updated. At the completion of
Phase 3, i goes off-line. Processors deciding to go off-line during an update wait until
the completion of the update to flip their coin. If more than one processor enters Phase
1, the one with the largest label proceeds to Phase 2 and all such pending processors are
updated together. Note that pending processors that are going off-line add−1 during the
counting phase (i.e., during the computation of n0 + n1).

4.2. Algorithm Analysis

Theorem 3. For any integer k ≥ 3, let R be the DI RS defined by Algorithm 3 and
5, together with the appropriate procedure for going off-line. ThenR is correct and has
the following properties:

(1) the expected stretch factor is at most 1+ 1/k;
(2) the space required for the routing tables is at most O(log N) bits per node;
(3) the expected amortized number of messages sent per update is O(k)of O(k log N)

bits.

Proof. The proof of correctness of the Routing procedure is the same as that for Algo-
rithm 3 given above.

We now show that all pending processors eventually go on/off-line depending upon
the action they request. A processor wishing to become active sends a request R message.
Four possible situations may arise: (a) It receives back an answer A to its R message
and flips a coin with outcome tails. (Note that since processor 0 is always active, the
R message is always received by some active processor.) In this case it immediately
becomes active. (b) It receives back an answer A to its R message and flips a coin with
outcome heads. In this case it enters Phase 1. By an argument similar to that given for
Algorithm 4 at most one processor enters Phase 2 and its update runs to completion. At
the completion of the update, all processors that were in Phase 1 at the beginning of the
update will become active. (c) It does not receive an answer A message but it receives
a Phase 1 message. In this case it participates in the update and upon its completion
becomes active. (d) It does not receive an answer A message but it receives a Phase 2 or
3 message. In this case, at the completion of the update, it flips a coin and depending on

Compact Routing Schemes for Dynamic Ring Networks 597

the outcome ends up in case (a) or (b) above. A processor wishing to go off-line waits
until an update in progress is completed if one is in progress and then flips its coin. At
this point two situations can arise: (a) The coin flip outcome is tails in which case it goes
off-line. (b) The coin flip outcome is heads in which case it enters Phase 1. As before a
single processor will eventually enter Phase 2 and upon completion inform processors
that they may go off-line.

Proof of (1). We now show that the routing tables of active processors are correct
to within an expected stretch factor of 1+ 1/k. Consider the system at a quiescent state
and assume that the last update was done by processor i , i.e., i was the (unique) last
processor to enter into Phase 2 of the update procedure. Let n0 be the number of active
processors counted by i during its Phase 1 and let n1 be the number of pending processors
which are going on-line minus the number of pending processors that are going off-line
counted by i during its Phase 1. (Note that active processors that wish to go off-line but
have already received i’s Phase 1 or 2 messages are still active until after the update is
completed and are counted in n0.) Let n2 be the change in the size in the ring since the
end of Phase 1 for i , i.e., the number of processors that became active minus the number
that went off-line between the time that i’s Phase 1 message passes by the processor
and the quiescent state we are examining. Note that all of these processors flip a coin
with probability of heads min{1, 10k/(n0 + n1)}. The result of all of these coin flips is
tails. Otherwise, at least one of these processors would have initiated an update, i.e., a
contradiction. Therefore the absolute value of expected value of n2 is less than or equal
to (n0 + n1)/10k.

Letting n0+n1 = ν, D = �ν/(10k)�, we note that there are at mostλ = ν/D� labels
in V , which we denote by v0, . . . , vλ−1. To calculate op(x), we let vj , j ∈ {0, . . . , λ−1},
be the first processor after x in clockwise order around the ring that belongs to V , if
x �∈ V (if x ∈ V we let vj = x), and finally set op(x) = v(j+�λ/2�)modλ. We now calculate
the minimum distance between x and op(x). The distance between x and op(x) can be
considered to be made up of �λ/2�+1 distances, the first from x to vj , which is between
0 and D − 1 (0 if x = vj) and the remainder being of length exactly D except that one
may be as small as 1 (if D does not divide ν evenly). Thus, the minimum distance is
given by

1+ (�λ/2� − 1)D ≥ 1+ (λ/2− 3/2)D ≥ 1+ (ν/(2D)− 3/2)D.

In the worst case the longer distance between op(x) and x stays the same (respec-
tively is increased by n2), but the shorter distance decreases by n2, whose expected value
is ν/(10k) (respectively remains the same). Thus, the expected stretch is bounded by

ν − (1+ (ν/(2D)− 3/2)D

1+ (ν/(2D)− 3/2)D − ν/(10k)
≤ ν/2+ 3D/2

ν/2− 3D/2− ν/(10k)
≤ 10k + 3

10k − 5
.

It is easy to verify that this is bounded by 1+1/k for any integer k ≥ 3 (respectively
with similar computations we obtain that the expected stretch is bounded by the same
value).

Proof of (2). The space complexity is straightforward since every processor stores
a constant number of values of at most O(log N) bits each.

598 D. Krizanc, F. L. Luccio, and R. Raman

Proof of (3). We now prove that the expected amortized number of messages sent
per update is O(k). Messages are of size O(k log N) since R, A, and Phase 1 messages
(U1) have at most 3 + 4 log N bits. Phase 2 and 3 messages (U2 and U3) have at most
3 + (20k + 3) log N bits as the number of labels collected in V is at most 20k. As a
matter of fact, for n0 + n1 ≥ 10k, and n0 + n1 = q10k + r , with r < 10k, r and q
integers, we have:⌈

n0 + n1

�(n0 + n1)/10k�
⌉
=
⌈

q10k + r

�(q10k + r)/10k�
⌉
=
⌈

q10k + r

�q + r/10k�
⌉
=
⌈

10k + r

q

⌉

<

⌈
10k + 10k

q

⌉
=
⌈

10k

(
1+ 1

q

)⌉
≤ 20k� = 20k.

The expected number of messages sent per update can be bounded as follows. A
pending processor is responsible for sending at most one R message and at most one
A message. Moreover, it sends at most two Phase 1 messages, i.e., its own if it does
flip a coin or that of some pending processor behind it if it does not, plus the Phase 1
message of the eventual “winner” of the Phase 1 “race,” and at most one Phase 2 and 3
messages. After flipping its coin, with the probability of heads equal to min{1, 10k/n},
where n is the processors estimate for the size of the ring determined during the previous
successful update, it generates an update that may proceed through all three phases.
Let n′ be the number of changes that have occurred in the ring since the value n was
determined including changes occurring up to the point where the processor receives
back its “winning” Phase 1 message. The successful update is responsible for a total of
3(n+ n′)messages for each of the three phases. During this period 1+ n′ processors go
on-line or off-line. Note that processors arriving during Phase 2 or 3 are responsible for
their own messages before they flip their coin.

Therefore the expected amortized cost per update is at most

6+min

{
1,

10k

n

}
3(n + n′)

1+ n′
= O(k).

For the space complexity observe that every processor stores its label, the estimated
value of n, and an opposite value all of O(log N) bits plus some extra variables of O(1)
bits. At run time it needs another O(log N) bits for local computation.

5. Conclusions

In this paper we have considered the problem of routing in an asynchronous dynamically
changing ring of processors. We introduced a new technique, Dynamic Interval Routing,
and applied it to the ring. We presented three algorithms for rings of maximum size N :
the first two are deterministic, one with adaptation cost zero but worst case stretch factor
�N/2�, the other with worst case adaptation cost O(N) messages of size O(log N) bits
and stretch factor 1. The third is a randomized algorithm that uses update messages of size
O(k log N), has adaptation cost O(k), and expected stretch factor 1+ 1/k. All schemes
require O(log N) bits per node for storing the routing information and all messages have
headers of size O(log N) bits.

Compact Routing Schemes for Dynamic Ring Networks 599

Observe that the techniques introduced can be easily extended to the case of the ring
of rings networks. It remains an open problem to study whether the tradeoffs established
by our randomized algorithm hold in the deterministic setting and to see to which other
topologies the above techniques can be applied. Also, it would be interesting to find tight
lower bounds for the problem.

Appendix

Algorithm 1 /* Update procedure for a processor i going on-line*/

1 get fixed label i ;
2 associate interval [(i + 1) mod N , �i + N/2� mod N] to the left arc;
3 associate interval [�i + 1+ N/2� mod N , (i − 1) mod N] to the right arc;
4 become active;

Algorithm 2 /* Routing procedure for active processor i*/

1 repeat
2 if willing to send a data message M to a node r then
3 if (i + 1) mod N ≤ r ≤ �i + N/2� mod N
4 then send M = (D, r, i, 0) to the left
5 else to the right
6 fi
7 fi;
8 if receiving M = (D, r, s, x) from direction then
9 if r �= i then if i = 0 then x := x + 1;
10 if x �= 2 and ((direction = left) and (r �∈ [(i + 1) mod N , (s − 1)mod

N]))
11 or ((direction = right) and (r �∈ [(s + 1) mod N , (i − 1) mod N]))
12 then forward M = (D, r, s, x) to opposite (direction)
13 else kill M /* r went off-line */
14 fi
15 else process M
16 fi
17 fi
18 until off-line;

Algorithm 3 /* Routing procedure for processor i */

1 if pending
2 then if receiving a data message M = (D, r, s, x) from direction
3 then if [((direction = left) and (r �∈ [(i + 1) mod N , (s − 1) mod N])) or
4 ((direction = right) and (r �∈ [(s + 1) mod N , (i − 1) mod N]))] and (r �= i)
5 then forward M = (D, r, s, x) to opposite (direction)
6 else kill M /* r went off-line or M is an old message */
7 fi
8 fi
9 else /* i is active */
10 if sending a data message M = (D, r, i, 0) to a processor r
11 then if (i + 1) mod N ≤ r ≤ op(i)
12 then send M = (D, r, i, 0) to the left

600 D. Krizanc, F. L. Luccio, and R. Raman

13 else to the right
14 fi
15 else if receiving M = (D, r, s, x) from direction
16 then if r �= i then if i = 0 then x := x + 1;
17 if x �= 2 and ((direction = left) and (r �∈ [(i + 1) mod N , (s − 1)mod

N]))
18 or ((direction = right) and (r �∈ [(s + 1) mod N , (i − 1) mod N]))
19 then forward M = (D, r, s, x) to opposite (direction)
20 else kill M /* r went off-line */
21 fi
22 else process M
23 fi
24 fi
25 fi
26 fi;

Algorithm 4 /* Update procedure for processor i */

/* Phase 1 messages are in the form M = (1, r, a, op(a), even(a), b, op(b), even(b)), where r
is the receiver, and at the end a and b will be r ’s left and right active processors; even(x) = 1
if x is presently assuming the ring has an even number of processors; Phase 2 messages are
in the form M = (2, r, op(r), prev(r), k, op(k), even(k), oldop(k)), where r is the receiver,
prev(r) is the previous active neighbor with respect to the direction in which r sends M , k
is a processor, and oldop(k) its old opposite value; finally Phase 3 messages are in the form
M = (3, r, k, op(k), even(k)). */

1 if pending then /* the new pending processor has to get new values */
2 get value i ;
3 r i , li , op(i), op(li), op(r i), even(i), even(r i), even(li), oldop(i) := −1;
4 send M = (1, i,−1,−1,−1,−1,−1,−1) to the left;
5 /* sending a new update Phase 1 message */
6 repeat
7 if receiving M = (1, r, a, op(a), even(a), b, op(b), even(b))
8 /* another processor r �= i is in Phase 1 */
9 then if i > r
10 then buffer M
11 else forward M
12 fi
13 else if receiving M = (2, r, op(r), prev(r), k, op(k), even(k), oldop(k)) or
14 M = (3, r, k, op(k), even(k)) /* i receives a Phase 2 or 3 message */
15 then /* i updates left or right values since some other
16 processor has gone on-line before it */
17 if receiving M from the left
18 then li := k;
19 op(li) := op(k);
20 even(li) := even(k)
21 else r i := k;
22 op(r i) := op(k);
23 even(r i) := even(k)
24 fi;
25 forward M

Compact Routing Schemes for Dynamic Ring Networks 601

26 fi
27 fi
28 until receiving M = (1, i, a, op(a), even(a), b, op(b), even(b));
29 /* i got back its Phase 1 message */
30 if li = −1 then /* i’s left values have not been updated yet */
31 li := a;
32 op(li) := op(a);
33 even(li) := even(a)
34 fi;
35 if r i = −1 then /* i’s right values have not been updated yet */
36 r i := b;
37 op(r i) := op(b);
38 even(r i) := even(b)
39 fi;
40 /* asking the right neighbor for the oddness or evenness */
41 if even(r i) = 1 /* i gets values of right neighbor */
42 then op(i) := op(r i);
43 even(i) := ¬even(r i)

44 else op(i) := op(li);
45 even(i) := ¬even(li)

46 fi;
47 /* a Phase 2 message has to be sent */
48 if even(i) = 1
49 then prev(i) := li ;
50 send M = (2, i, op(i), prev(i), i, op(i), even(i), oldop(i)) to the right
51 else prev(i) := r i ;
52 send M = (2, i, op(i), prev(i), i, op(i), even(i), oldop(i)) to the left
53 fi;
54 repeat
55 if receiving M with r �= i then buffer M fi
56 until receiving M = (2, i, op(i), prev(i), k, op(k), even(k), oldop(k));
57 /* k is the previous active processor */
58 if receiving M from the right
59 then /* update right values */
60 op(r i) := op(k);
61 even(r i) := even(k)
62 else /* update left values */
63 op(li) := op(k);
64 even(li) := even(k)
65 fi;
66 M := (3, i, i, op(i), even(i));
67 if even(i) = 1
68 then send M to the left
69 else to the right
70 fi;
71 repeat
72 if receiving M with r �= i then buffer M fi
73 until receiving M = (3, i, k, op(k), even(k));
74 if receiving M from the right
75 then /* update right values */

602 D. Krizanc, F. L. Luccio, and R. Raman

76 op(r i) := op(k);
77 even(r i) := even(k)
78 else /* update left values */
79 op(li) := op(k);
80 even(li) := even(k)
81 fi;
82 if li = r i then /* there is only another active processor, i.e., 0 */
83 oldop(i) := op(i);
84 op(i) := li ;
85 op(li) := op(r i) := i
86 fi;
87 process buffered messages in FIFO order and eventually update their old values;
88 let messages eventually go through;
89 become active
90 else /* i is active */
91 repeat
92 if receiving M = (1, r, a, op(a), even(a), b, op(b), even(b)) /* Phase 1 message */
93 then if r = i then kill M /* r cannot go off-line */
94 else /* M has to be updated */
95 if a = op(a) = even(a) = −1
96 then M := (1, r, i, op(i), even(i), i, op(i), even(i))
97 /* i is r ’s left processor */
98 else M := (1, r, a, op(a), even(a), i, op(i), even(i))
99 /*i is r ’s possible right processor */
100 fi;
101 forward M
102 fi
103 else if receiving M = (2, r, op(r), prev(r), k, op(k), even(k), oldop(k))
104 /* Phase 2 message */
105 then if coming from the right
106 then /* update right and local values */
107 r i := k;
108 op(r i) := op(k);
109 even(i), even(r i) := even(k);
110 if k = op(r) /* the previous active processor is op(r) */
111 then oldop(i) := op(i);
112 op(i) := r
113 else if i ∈ (op(r), prev(r)]
114 /* i is between op(r) and r */
115 then oldop(i) := op(i);
116 op(i) := oldop(k)
117 fi
118 fi
119 else /* update left and opposite values */
120 li := k;
121 op(li) := op(k);
122 even(i), even(li) := even(k);
123 if i = op(r) /* i is opposite to r */
124 then oldop(i) := op(i);
125 op(i) := r

Compact Routing Schemes for Dynamic Ring Networks 603

126 else if i ∈ [prev(r), op(r))
127 /* i is between r and op(r) */
128 then oldop(i) := op(i);
129 op(i) := oldop(k)
130 fi
131 fi
132 fi;
133 forward M = (2, r, op(r), prev(r), i, op(i), even(i), oldop(i))
134 else if receiving M = (3, r, k, op(k), even(k))
135 /* Phase 3 message */
136 then if coming from the right
137 then /* update right values */
138 r i := k;
139 op(r i) := op(k);
140 even(r i) := even(k)
141 else /* update left values */
142 li := k;
143 op(li) := op(k);
144 even(li) := even(k)
145 fi;
146 if r i = li then oldop(i) := op(i);
147 op(i) := r i ;
148 op(r i) := op(li) := i
149 fi;
150 forward M = (3, r, i, op(i), even(i))
151 fi
152 fi
153 fi
154until off-line
155 fi;

Algorithm 5 /* Update procedure for processor i */

/* Every message contains as its first value a message label. Request messages are R = (1, r),
where r is the receiver’s (and in this case also the sender’s) name; answer messages are A =
(2, r, s, n, op(s)), where s is the sender’s name and op(s) is its opposite value; Phase 1 mes-
sages are in the form U1 = (3, n0, n1, r), where n0 (n1) is the number of active (pending) pro-
cessors during Phase 1; Phase 2 messages are in the form U2 = (4, �(n0 + n1)/10k�, d, V, r),
where d is a counter and V a vector of processors labels; finally Phase 3 messages are in the
form U3 = (5, n, V, r). */

1 if pending then
2 get value i ;
3 a, exit := 0;
4 send R = (1, i) to the left;
5 /* this is a request of the n and op(next(i)) values */
6 repeat
7 if receiving a message U1 = (3, n0, n1, r)
8 then a := 1 /* message A for i will have to be ignored and the update will be

global */ ;
9 forward U1 = (3, n0, n1 + 1, r)

604 D. Krizanc, F. L. Luccio, and R. Raman

10 fi;
11 if receiving a message U2 = (4, �(n0 + n1)/10k�, d, V, r)
12 then if a = 1 /* i may have to be added to V as it is pending during Phase 1 */
13 then if �(n0 + n1)/10k� = d − 1
14 then forward U2 = (4, �(n0 + n1)/10k�, 0, V ∪ {i}, r)
15 else forward U2 = (4, �(n0 + n1)/10k�, d + 1, V, r)
16 fi
17 else /* a = 0, i.e., i was not pending during Phase 1 */
18 forward U2 = (4, �(n0 + n1)/10k�, d, V, r)
19 fi
20 fi;
21 if receiving a message U3 = (5, n, V, r)
22 then get n;
23 get op(i) from V ;
24 exit := 1;
25 forward U3

26 fi;
27 if receiving R = (1, r) then buffer R fi;
28 if receiving A = (2, r, s, n, op(s)) and r �= i
29 then if r is between i and s then kill A
30 else buffer A
31 fi;
32 if (a = 1) and receiving A = (2, i, s, n, op(s)) then kill A fi
33 until exit or ((a = 0) and receiving A = (2, i, s, n, op(s)));
34 if not exit then get new n and op(i) value from A;
35 if ((a = 1) and exit) then goto 2 /* i was pending during Phase 1 */
36 else /* i was pending during Phase 2 or 3 or received A */
37 1: flip the coin;
38 a, exit := 0;
39 if head /* obtained with probability min{1, 10k/n} */
40 then send an update message U1 = (3, 0, 0, i)
41 repeat
42 if receiving A = (2, r, s, n, op(s))
43 then if r = i or r is between i and s then kill A /* old message or r is off-

line */
44 else buffer A
45 fi
46 fi;
47 if receiving R = (1, r) then buffer R fi;
48 if receiving U1 = (3, n0, n1, r) and r �= i
49 then if r < i then kill U1

50 else forward U1 = (3, n0, n1 + 1, r);
51 a := 1
52 fi
53 fi;
54 if receiving U2 = (4, �(n0 + n1)/10k�, d, V, r)
55 then if a = 1 then if �(n0 + n1)/10k� = d − 1
56 then forward U2 = (4, �(n0 + n1)/10k�, 0, V ∪ {i},

r)
57 else forward U2 = (4, �(n0 + n1)/10k�, d + 1, V, r)

Compact Routing Schemes for Dynamic Ring Networks 605

58 fi
59 else forward U2 = (4, �(n0 + n1)/10k�, d, V, r) /* a = 0 */
60 fi
61 fi;
62 if receiving U3 = (5, n, V, r)
63 then get n;
64 get op(i) from V ;
65 exit := 1;
66 forward U3

67 fi
68 until receiving U1 = (3, n0, n1, i) or exit;
69 if exit = 1 and a = 1 then goto 2 /* i was pending during Phase 1 */
70 else send U2 = (4, �(n0 + n1)/10k�, d = 0, V = {i}, i);
71 repeat
72 if receiving R = (1, r) then buffer R fi;
73 if receiving A = (2, r, s, n, op(s))
74 then if r = i or r is between i and s then kill A /* old message or r is off-

line */
75 else buffer A
76 fi
77 fi;
78 if receiving an U1 message then kill U1;
79 /* it cannot receive U2 and U3 for r �= i */
80 fi
81 until receiving U2 = (4, �(n0 + n1)/10k�, d, V, i);
82 send U3 = (5, n = n0 + n1, V, i);
83 repeat
84 if receiving R = (1, r) then buffer R fi;
85 if receiving A = (2, r, s, n, op(s))
86 then if r = i or r is between i and s then kill A /* old message or r is off-

line */
87 else buffer A
88 fi
89 fi;
90 if receiving an U1 message then kill U1

91 /* it cannot receive U2 and U3 for r �= i */
92 fi
93 until receiving U3 = (5, n, V, i);
94 get n;
95 get op(i) from V ;
96 fi;
97 2: reply to all buffered A and R messages with A = (2, r, i, n, op(i));
98 /* i.e., eventually substitute the old A received */
99 become active;
100else /* i is active */
101repeat
102 if receiving R = (1, r)
103 then if a = 0 and r �= i then send A(2, r, i, n, op(i)) back
104 else kill R /* r will get its values anyway */
105 fi

606 D. Krizanc, F. L. Luccio, and R. Raman

106 fi;
107 if receiving A = (2, r, s, n, op(s))
108 then if r is between i and s or r = i
109 then kill A /* r went off-line or A is an old message for i*/
110 else forward A = (2, r, i, n, op(i))
111 fi
112 fi;
113 if receiving a message U1 = (3, n0, n1, r)
114 then a := 1;
115 forward U1 = (3, n0 + 1, n1, r)
116 /* r cannot go off-line */
117 fi;
118 if receiving a message U2 = (4, �(n0 + n1)/10k�, d, V, r)
119 then if �(n0 + n1)/10k� = d − 1
120 then forward U2 = (4, �(n0 + n1)/10k�, 0, V ∪ {i}, r)
121 else forward U2 = (4, �(n0 + n1)/10k�, d + 1, V, r)
122 fi
123 fi;
124 if receiving a message U3 = (5, n, V, r)
125 then get n;
126 get op(i) from V ;
127 a := 0;
128 forward U3

129 fi;
130until off-line
131 fi.

References

[1] Y. Afek, E. Gafni, and M. Ricklin. Upper and lower bounds for routing schemes in dynamic networks.
In Proceedings of the 30th Annual Symposium on Foundations of Computer Science (FOCS), pages
370–375, 30 October to 1 November 1989.

[2] B. Awerbuch. Shortest paths and loop-free routing in dynamic networks. SIGCOMM Computer Com-
munication Review, 20(4):177–187, September 1990.

[3] B. Awerbuch, A. Bar-Noy, D. Peleg, and N. Linal. Improved routing strategies with succinct tables.
Journal of Algorithms, 11(3):307–341, September 1990.

[4] B. Awerbuch and Y. Mansour. An efficient topology update protocol for dynamic networks. In Proceed-
ings of the 6th International Workshop on Distributed Algorithms (WDAG), pages 185–202, November
1992.

[5] B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. Saks. Adapting to asynchronous dynamic networks. In
Proceedings of the 24th ACM Symposium on Theory of Computing (STOC), pages 557–570, May 1992.

[6] B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilizing end-to-end communication. Journal of
High Speed Networks, 5(4):365–381, 1996.

[7] E.M. Bakker, J. van Leeuwen, and R.B. Tan. Linear interval routing. Algorithms Review, 2(2):45–61,
1991.

[8] E.M. Bakker, J. van Leeuwen, and R.B. Tan. Prefix routing schemes in dynamic networks. Computer
Networks and ISDN Systems, 26(4):403–421, December 1993.

[9] S. Dolev, E. Kranakis, D. Krizanc, and D. Peleg. Bubbles: adapting routing scheme for high-speed
dynamic networks. SIAM Journal on Computing, 29(3):804–833, December 1999.

[10] M. Flammini, G. Gambosi, and S. Salomone. Interval routing schemes. Algorithmica, 16(6):549–568,
December 1996.

Compact Routing Schemes for Dynamic Ring Networks 607

[11] P. Fraigniaud and C. Gavoille. A characterization of networks supporting linear interval routing. In
Proceedings of the 13th ACM Conference on Principles of Distributed Computing (PODC), pages
216–224, August 1994.

[12] P. Fraigniaud and C. Gavoille. Optimal interval routing. In Proceedings of Parallel Processing: CONPAR
’94, pages 785–796. LNCS 854. Springer-Verlag, Berlin, September 1994.

[13] P. Fraigniaud and C. Gavoille. Interval routing schemes. Algorithmica, 21(2):155–182, June 1998.
[14] C. Gavoille. Lower bounds for interval routing on bounded degree networks. Technical Report RR-

1144-96, LaBRI University of Bordeaux, France, October 1996.
[15] C. Gavoille. A survey on interval routing scheme. Theoretical Computer Science, 245(2):217–253,

August 2000.
[16] E. Kranakis, D. Krizanc, and S.S. Ravi. On multi-label linear interval routing schemes. The Computer

Journal, 39(2):133–139, 1996.
[17] D. Krizanc, F.L. Luccio, and R. Raman. Dynamic interval routing on asynchronous rings. In Proceedings

of the IEEE 13th International Parallel Processing Symposium and 10th Symposium on Parallel and
Distributed Processing (IPPS/SPDP), pages 225–232, April 1999.

[18] J. van Leeuwen and R.B. Tan. Interval routing. The Computer Journal, 30(4):298–307, August 1987.
[19] L. Narayanan and N. Nishimura. Interval routing on k-trees. Journal of Algorithms, 26(2):325–369,

February 1998.
[20] D. Peleg and E. Upfal. A trade-off between space and efficiency for routing tables. Journal of the ACM,

36(3):510–530, July 1989.
[21] N. Santoro and R. Khatib. Labeling and implicit routing in networks. The Computer Journal, 28(1):5–8,

February 1985.
[22] A.S. Tanenbaum. Computer Networks. Prentice-Hall, Engelwood Cliffs, NJ, 1996.

Received April 5, 2002, and in revised form January 7, 2003, and April 4, 2003, and in final form April 14,
2003. Online publication May 5, 2004.

