
Decentralized User Authentication in a Global File System

Michael Kaminsky, George Savvides, David Mazières, M. Frans Kaashoek
MIT Computer Science and Artificial Intelligence Laboratory

McGill University School of Computer Science, NYU Department of Computer Science

kaminsky@csail.mit.edu, gsavvi1@cs.mcgill.ca, dm@cs.nyu.edu, kaashoek@csail.mit.edu

ABSTRACT
The challenge for user authentication in a global file system is al-
lowing people to grant access to specific users and groups in remote
administrative domains, without assuming any kind of pre-existing
administrative relationship. The traditional approach to user au-
thentication across administrative domains is for users to prove their
identities through a chain of certificates. Certificates allow for gen-
eral forms of delegation, but they often require more infrastructure
than is necessary to support a network file system.

This paper introduces an approach without certificates. Local au-
thentication servers pre-fetch and cache remote user and group def-
initions from remote authentication servers. During a file access,
an authentication server can establish identities for users based just
on local information. This approach is particularly well-suited to
file systems, and it provides a simple and intuitive interface that is
similar to those found in local access control mechanisms. An im-
plementation of the authentication server and a file server support-
ing access control lists demonstrate the viability of this design in
the context of the Self-certifying File System (SFS). Experiments
demonstrate that the authentication server can scale to groups with
tens of thousands of members.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—authenti-
cation, access controls; D.4.3 [Operating Systems]: File Sys-
tems Management—distributed file systems; K.6.5 [Management
of Computing and Information Systems]: Security and Pro-
tection—authentication; C.2.4 [Computer-Communication Net-
works]: Distributed Systems—distributed databases

General Terms
Security, Design

Keywords
Authentication, authorization, groups, users, SFS, file system,
ACL, credentials

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’03, October 19–22, 2003, Bolton Landing, New York, USA.
Copyright 2003 ACM 1-58113-757-5/03/0010. . . $5.00

1. INTRODUCTION
A challenge in the design of a global file system, which spans multi-
ple administrative domains, is to provide access control lists (ACLs)
that can contain remote principals, principals that are defined and
maintained by other administrative domains. For example, a user
Alice at Microsoft may want to put a remote user Bob at Intel on
her ACLs for files that are part of a joint development project. As
another example, Charles at CMU may want to provide all the stu-
dents at MIT access to his course software without having to enu-
merate all of the students on his ACL; he would like to name a
remote group managed by someone at MIT.

Early network file systems, such as AFS [18], have no mech-
anism to name remote principals on ACLs; users can place only
principals that are in the local cell’s authentication database on
their ACLs. AFS supports cross-realm authentication through Ker-
beros [31], but setting up cross-realm authentication requires as-
sistance from system administrators who need to “link” the realms
ahead of time. More recently, this centralized trust model has found
widespread use in the Windows domain system [24].

Other systems, such as SDSI/SPKI [12, 28] and CRISIS [2], sup-
port remote principals through certificates. In these systems, Alice
puts Bob’s name on her access control list (or a group that con-
tains Bob’s name), and Bob presents a set of certificates to prove
that he is Bob (or a member of the group). Alice’s server then ver-
ifies the signatures on the certificates and, if the certificates check
out, makes the authorization decision. These systems are powerful
(e.g., they provide sophisticated delegation) but require a certificate
authentication infrastructure separate from the file system, and, as
described in the related work, the process for generating the right
chain of certificates that prove access can be complex.

This paper presents an authentication server that supports remote
users and groups without requiring certificates. The authentication
server provides a simple and familiar interface that mirrors local ac-
cess control mechanisms. Users create file sharing groups, add local
and remote principals to those groups, and then place those groups
on ACLs in the file system. When a user accesses this file system,
the file server sends a request to its local authentication server to
authenticate the user. The authentication server establishes a set
of identities for the user and returns them to the file server. We
call this set of identities the user’s credentials. The file server uses
these credentials, along with the file’s ACL, to make the authoriza-
tion decision. In this model, users are not responsible for collecting
and presenting their credentials to the file system; the local authen-
tication server provides any relevant credentials that the file system
might need to authorize the file access.

A design goal for the authentication server is that it can respond
to an authentication request without contacting any remote authen-
tication servers (which store the definitions of remote principals).

This goal is important because we do not want file access to be de-
layed by having to contact a potentially large number of remote au-
thentication servers, some of which might be temporarily unreach-
able. To achieve this goal, the authentication server pre-fetches and
caches remote user and group definitions. This strategy compro-
mises the consistency of group lists; for example, when a remote
group changes, this change is not immediately visible at other au-
thentication servers which reference this group. The system has
eventual consistency [6], but this consistency may take up to an
hour to achieve (in the absence of network failures). We do not be-
lieve that this compromise is an issue in practice. Many certificate-
based systems make similar trade-offs; for example, certificates
might still be usable for hours after revocation [36]. Other systems
employ authentication caches that have timeouts [22, 2], or they use
security tokens that specify group membership for as long as a user
is logged in to his workstation [24].

We have implemented the authentication server for the Self-
certifying File System (SFS) [23]. It is fully functional, in daily use,
and supports remote users and groups. To validate the functions of
the authentication server, we have extended the SFS read-write file
system server to support ACLs. For ease of implementation, we
store the ACLs for files in the first 512 bytes. This implementa-
tion has a performance overhead, but it allows us to demonstrate
the usefulness of the authentication server.

The following example demonstrates how Charles at CMU might
use this system to share his course software. The details of this
example will become clear throughout the rest of the paper, but
they provide a flavor of the features provided by our system.

The software is on Charles’s ACL-enabled file server in a direc-
tory called /courseware. First, Charles creates a personal group
on the authentication server:

$ sfskey group -C charles.cwpeople

He can now add members to this new group (the syntax of group
members is described in detail in Section 3):

$ sfskey group \
-m +u=james \
-m +u=liz@bu.edu,gnze6... \
-m +g=students@mit.edu,w7abn9p... \
-m +p=anb726muxau6phtk3zu3nq4n463mwn9a \

charles.cwpeople

james is a local user, liz is a remote user maintained at
bu.edu, students is a remote group at mit.edu, and
anb726muxau6phtk3zu3nq4n463mwn9a is a hash of the
public key belonging to a user who is not associated with an or-
ganization that runs an authentication server. Both bu.edu and
mit.edu are self-certifying hostnames [23]—a combination of the
server’s DNS name and a hash of its public key. Self-certifying
hostnames allow the local authentication server to securely connect
to the remote one.

If Charles decides that he wants to share administrative responsi-
bility for his group with a friend at Sun, he can make his friend an
owner:

$ sfskey group \
-o +u=george@sun.com,heq38... \

charles.cwpeople

George is now free to add new members (or delete current ones)
from Charles’s group. Finally, Charles is ready to use his group to

share his courseware. He constructs an ACL and places it on the
directory as follows:

$ cat myacl.txt
ACLBEGIN
user:charles:rwlida:
group:charles.cwpeople:rl:
ACLEND
$ sfsacl -s myacl.txt /courseware

Charles has full access permissions to the directory, but the mem-
bers of his group can only read and list its contents. The details of
SFS ACLs are given in Section 4.

The remainder of the paper describes the design and implementa-
tion of the authentication server and the ACL-enabled file system.
We provide an evaluation of the system and describe the related
work. The paper concludes with a discussion of some future work.

2. SECURITY AND TRUST MODEL
SFS is a collection of clients and servers that provide several
services—a global file system, remote execution [20], and user au-
thentication. SFS clients and servers communicate using Remote
Procedure Calls (RPCs).

SFS depends on public-key cryptography. Servers have private
keys, which they do not disclose. Given the corresponding pub-
lic key, a client can establish a connection to the server that pro-
vides confidentiality, integrity and authenticity. In SFS, clients al-
ways explicitly name the server’s public key using self-certifying
hostnames, a combination of the server’s DNS name and a crypto-
graphic hash of its public key. This paper does not prescribe any
specific means for distributing server public keys to clients. A vari-
ety of out-of-band methods are possible.

SFS guarantees the following security properties for connections
between SFS clients and servers:

• Confidentiality: A passive attacker, who is able to observe
network traffic, can only accomplish traffic analysis.

• Integrity: An active attacker, who is able to insert, delete,
modify, delay and/or replay packets in transit, can, at best,
only effect a denial of service.

• Server Authenticity: When the client initiates a secure con-
nection to the server, the server must prove that it knows the
private key corresponding to the public key named in its self-
certifying hostname. Once the connection has been estab-
lished, the client trusts the server to be who it claims to be.

Mazières et al. [23] describes the details of self-certifying host-
names and the protocols that SFS uses to set up secure connections.
The next section describes user authentication for requests sent over
an SFS connection.

3. USER AUTHENTICATION
SFS allows clients to initiate user authentication any time after the
connection is set up. Typically, user authentication occurs right
away. Some connections, however, do not require user authentica-
tion immediately, and others do not require user authentication at
all. User authentication only needs to happen once per connection
for a given user (not on every request).

ACL-
enabled

File
Server

Local
Auth

Server

Remote
Auth

Servers

SFS
Clients

Secure Network
Connections

Agents

Figure 1: Overview of the SFS authentication architecture

User authentication is a multi-step operation. It begins when the
SFS agent, a process running on the user’s machine, signs an au-
thentication request on behalf of the user with his private key (see
Figure 1). The user sends this request to the file server (for exam-
ple), which passes it, as opaque data, on to the local authentication
server. The authentication server verifies the signature on the re-
quest and issues credentials to the user based on the contents of
its database. The authentication server then hands these credentials
back to the file server, which is free to interpret them as it sees fit.
Subsequent communication by the user over the same connection
receives the same credentials but does not require interaction with
the authentication server.

In the current implementation, the local authentication server
runs on the same machine as the file server. This detail, however,
is not fundamental to the design of the system. Several file servers
could share a single “local” authentication server (e.g., on a LAN)
by naming it with a self-certifying hostname. Currently, file servers
can share an authentication database through replication, restricting
updates to a single primary server.

3.1 Authentication server
The SFS authentication server serves two main functions. First, it
provides a generic user authentication service to other SFS servers.
Second, it provides an interface for users to manage the authentica-
tion name space.

Users name remote authentication servers, like other SFS servers,
using self-certifying hostnames. They name remote users and
groups that are defined on authentication servers in other adminis-
trative realms using the same idea. Because remote user and group
names contain self-certifying hostnames, they are sufficient to es-
tablish a connection to the appropriate authentication server and
retrieve the user or group’s definition. By naming a remote user
or group, users explicitly trust the remote authentication server to
define that user or group.

The main challenge in designing the SFS authentication server is
how to retrieve remote user, and particularly, remote group defini-
tions. For example, remote authentication servers might be unavail-
able due to a network partition. Remotely defined groups might
themselves include other groups. The nesting could be several lev-
els deep, involving many authentication servers, and possibly cy-
cles.

3.1.1 Interface

The authentication server maintains a database of users and groups
in SFS. To a first approximation, this database is analogous to
Unix’s /etc/passwd and /etc/group. The authentication
server presents an RPC interface which supports three basic op-
erations:

• LOGIN allows an SFS server to obtain credentials for a user
given an authentication request. LOGIN is the main step of
the user authentication process described above.

• QUERY allows a user (or another authentication server) to
query the authentication database for a particular record (e.g.,
user or group) based on some record-specific key (e.g., name
or public key).

• UPDATE allows a user to modify records in the authentica-
tion database. Access control is based on the record type and
the user requesting the update.

LOGIN, by definition, does not require a user-authenticated con-
nection. QUERY can be authenticated or unauthenticated; when
replying to an unauthenticated QUERY, the authentication server
can hide portions of the user or group record (see Section 3.2.3).
UPDATE, however, does require an authenticated connection, so
the authentication server can perform access control to the database.

If a user wants to modify a record using UPDATE, he first con-
nects directly to the authentication server as he would connect to
any other SFS server. The authentication server generates creden-
tials for the user by effectively calling LOGIN on itself. Finally,
the user issues UPDATE over the user-authenticated connection.

3.1.2 User records

Each user record in the authentication database represents an SFS
user. Often, SFS user records correspond to Unix user entries in
/etc/passwd, and system administrators can configure SFS to
allow users to register themselves with the authentication server
initially using their Unix passwords. SFS user records contain the
following fields: 1

1When referring to field names, the convention throughout this
paper will be to use a sans-serif typeface.

p=bkfce6jdbmdbzfbct36qgvmpfwzs8exu
u=alice
u=bob@cs.cmu.edu,fr2eisz3fifttrtvawhnygzk5k5jidiv
g=alice.friends
g=faculty@stanford.edu,7yxnw38ths99hfpqnibfbdv3wqxqj8ap

Figure 2: Example user and group names in SFS. Both bob and faculty are remote names, which include self-certifying hostnames.

User Record:

User Name Public Key
ID Privileges
GID SRP Information
Version Audit String

User Name, ID and GID are analogous to their Unix counterparts.
Version is a monotonically increasing number indicating how many
updates have been made to the user record. Privileges is a text field
describing any additional privileges the user has (e.g., “admin” or
“groupquota”). SRP Information is an optional field for users who
want to use the Secure Remote Password protocol [35]. The Audit
String is a text field indicating who last updated this user record
and when. Users can update their Public Keys and SRP Information
stored on the authentication server with the UPDATE RPC.

3.1.3 Group records
Each group record in the authentication database represents an SFS
group. Administrators can optionally configure the authentication
server to treat Unix groups (in /etc/group) as read-only SFS
groups. SFS groups contain the following fields:

Group Record:
Group Name Owners
ID Members
Version Audit String

Groups have a name Group Name. SFS groups created by
regular users have names that are prefixed by the name of the
user. For example, the user alice can create groups such as
alice.friends and alice.colleagues. Users with ad-
ministrative privileges can create groups without this naming re-
striction. Each group also has a unique ID.

SFS groups have a list of Members and a list of Owners; the
group’s Owners are allowed to make changes to the group. The
elements of these lists are SFS user and group names which are
described below. Users who create personal groups implicitly
own those groups (e.g., alice is always considered an owner of
alice.friends).

Administrators can set up per-user quotas that limit the number
of groups a particular user can create, or they can disable group
creation and updates completely. Per-user quotas are stored in the
Privileges field of the user record.

3.1.4 Naming users and groups
The authentication server understands the following types of
names, which can appear on the Owners and Members lists in
group records:

• Public key hashes
• User names
• Group names

Public key hashes are ASCII-armored SHA-1 hashes [13] of
users’ public keys. They are the most basic and direct way to name
an SFS user.

User names refer to SFS user records defined either in the lo-
cal authentication database or on a remote authentication server.
Local user names are simply the User Name field of the record.
Remote user names consist of the User Name field plus the self-
certifying hostname of the authentication server that maintains the
user record.

Similarly, group names refer to group records defined either
in the local authentication database or on a remote authentication
server. Local group names are the Group Name field of the record,
and remote group names are the Group Name field plus the self-
certifying hostname of the remote authentication server.

To distinguish between public keys, users, and groups, Own-
ers and Members lists use the following two-character prefixes for
each element: u=, g=, and p=. The table in Figure 2 shows sev-
eral examples of these three types of names. (In the last example,
g=faculty@... is not prefixed by a user name because it was
created by a user with administrative privileges.)

Public key hashes are important for two reasons. First, they pro-
vide a universal way to name users who are not associated with
an authentication server (e.g., a cable modem user). Second, they
can provide a degree of privacy by obfuscating the user names on a
group membership list. Such lists of user names might be private; if
the user names correspond to email addresses, they might be abused
to send spam.

User names are also important because they provide a level of
indirection. Naming an authentication server (and its public key)
instead of naming the user’s public key provides a single point of
update should the user want to change his key or need to revoke
it. Authentication server self-certifying hostnames might appear
in more than one membership list, but they typically change less
frequently than user keys.

With respect to group names, indirection through an authentica-
tion server can provide a simple form of delegation. The last exam-
ple in Figure 2 shows how a user might name all of the faculty at
Stanford. The membership list for that group can be maintained by
administrators at Stanford, and SFS users who reference that group
do not need to be concerned with keeping it up-to-date. Because
all five types of names listed above can also appear on Owners
lists, groups with shared ownership are possible. For example, a
group might contain the members of a conference program com-
mittee. The group’s owners are its two co-chairs. The owners and
the members of this group all belong to different administrative or-
ganizations, but the SFS authentication server provides a unified
way to name each of them.

Naming users and groups with self-certifying hostnames dele-
gates trust to the remote authentication server. Delegation is im-
portant because it allows the remote group’s owners to maintain the

Level 0

Level 1

Level 2

Level 3

g1

u1 p1 g3

p2 p3 p4

g2

u2 g4

u3

p5

Figure 3: Membership graph for local groups g1 and g2

group’s membership list, but it implies that the local server must
trust those owners.

3.2 Resolving group membership
The credentials that the authentication server issues may include a
list of groups, but these groups must be local (defined on the au-
thentication server itself). Any remote groups (or users) of interest
to this authentication server must exist as members of some local
group. The server resolves each local group into a set of public keys
by fetching all of the remote users and groups that the local group
contains.

Even though this decision puts some restrictions on the user (e.g.,
by disallowing remote principals to appear directly on ACLs), it has
two important advantages. First, the authentication server knows
exactly which remote users and groups to fetch (i.e., those which
are members of local groups). Second, the authentication server
fetches only users and groups that are necessary to issue credentials
to a user.

Conceptually, the local groups on a particular authentication
server are part of a membership graph, which defines the relation-
ship between those local groups, their members, their members’
members, and so forth. Each node represents one of the three types
of names that can appear in a group’s Members list: a public key
hash, a user name, or a group name. The direction of the edges
indicates membership. For example, an edge from user U to group
G means that U is a member of G. An edge from public key hash P
to remote user U means that U is the user with public key hash
P (i.e., public key hashes are “members” of a remote user). A
multi-hop path in the membership graph means that the member-
ship relationship involves one or more levels of indirection (i.e., it
involves remote users or groups that are defined on other authenti-
cation servers).

Figure 3 shows the membership graph for two local groups g1
and g2. Local users and groups are shaded gray, remote ones are
not. User u1, public key hash p1, and group g3 are all members of
group g1. Group g3, user u2 and group g4 are members of group
g2. User u1 is a remote user with public key hash p2; the edge from
p2 to u1 indicates this relationship (the same relationship exists be-
tween u3 and p5). User u2, however, is a local user (it resides on
the same authentication server as g1 and g2), so it has no in edge.
Groups g4 and g2 are members of each other and form a cycle in
the membership graph.

To issue credentials for a user, the authentication server must de-
termine the local groups to which that user belongs. The server
generates this group list by traversing the membership graph start-
ing at the nodes which represent that user: a public key hash and
possibly also a local user name (if the user has an account on the
authentication server). The authentication server avoids cycles by
never visiting the same node twice. When it reaches a local group,
it adds that group to the user’s credentials. The user with public key
hash p5 would receive credentials containing only the local group
g2. His credentials would not include group g1 because the mem-
bership graph does not contain a path from p5 to g1.

To construct the membership graph, the authentication server
first constructs a complementary graph called the containment
graph. The containment graph consists of the same nodes, but its
edges have the opposite direction. In the containment graph, an
edge from group G to user U means that G contains, or lists, U as
one of its members; similarly, a remote user node “contains” the
node for that user’s public key hash. Nodes representing a public
key hash or a local user do not have any out edges. Nodes represent-
ing a remote user have exactly one out edge to the public key hash
node for that user. Nodes representing a group (local or remote)
have an out edge for each name appearing in the group’s Members
list.

The containment graph has one or more levels. Level 0 consists
only of local groups. Level 1 consists of those names that appear
directly in the definitions of the local groups. In general, Level n
consists of all entities that are n hops away from the local groups
at Level 0. The containment graph can have cycles when a group
contains itself through zero or more other groups.

Given the containment graph, constructing the membership
graph and traversing it in order to issue credentials is straightfor-
ward and efficient. Resolving group membership thus reduces to
the problem of constructing the containment graph given a set of lo-
cal groups. Accurately constructing the containment graph is chal-
lenging for the following reasons:

1. Groups can name remote users and groups. Constructing the
containment graph would be easy if all of the user and group
names were local. When membership lists contain remote
user and group names, constructing the graph might require
contacting a large number of remote authentication servers.
Because the graph has dependencies (i.e., fetching a group
at Level n requires first fetching that group’s parent at Level

n− 1), connecting to authentication servers cannot be done
completely in parallel.

2. Traversing the containment graph must be efficient. The au-
thentication server cannot simply block while it recursively
fetches group lists from other authentication servers. With
large groups, which reference many authentication servers,
the chance that one or more servers is unavailable could be
high. Timing out while resolving group membership is an un-
acceptable delay when a user is trying to access a file system.

3. The containment graph changes. Group membership can be
dynamic, particularly since ordinary users can add and re-
move groups themselves; furthermore, changes can happen to
remote groups that are several levels away in the containment
graph. The local authentication server needs to know about
these changes when it constructs the graph in order to issue
credentials accurately.

We address these problems by splitting the authentication task
into two parts: constructing the graphs and issuing credentials. The
authentication server does the first part, constructing the contain-
ment and membership graphs, in the background by periodically
pre-fetching and caching the records associated with remote user
and group names. It does the second part, issuing credentials, when
the user accesses the file system. Because the server has the mem-
bership graph cached, it can quickly generate the group member-
ship list for the given user.

Pre-fetching and caching membership information in the back-
ground compromises freshness for efficiency, but it allows the au-
thentication server to generate credentials using only local informa-
tion. The local server does not contact other authentication servers
in the critical path, when users access the file system. The server
saves the cache to disk so that it persists across server restarts.

3.2.1 Updating the cache

To update its cache of user and group records, the local authenti-
cation server fetches each remote user and group found in the con-
tainment graph. It performs a breadth-first traversal beginning with
the local groups and detects graph cycles by remembering which
groups it has seen. When the traversal reaches a local user or
a public-key hash, the server stops recursing. The authentication
server caches all remote user and group lookups (as well as local
groups for simplicity). The server also stores the reverse mappings
in the cache which represent the membership graph. This cache up-
date cycle is a periodic, background task that currently runs every
hour.

Fetching a remote user or group involves securely contacting the
remote authentication server that holds the corresponding database
record. Because all remote user and group names include a self-
certifying hostname, the local authentication server can establish
this secure connection without any additional information. The au-
thentication server uses one or more RPCs to download the user
record or group membership list.

3.2.2 Cache entries

The cache contains an entry for each node in the containment graph
that has an out edge: remote users map to public key hashes and

groups map to membership lists. Given the containment graph in
Figure 3, the cache would consist of the following entries:

g1: u1, p1, g3
g2: g3, u2, g4
u1: p2
g3: p3, p4
g4: u3, g2
u3: p5

The first two cache entries are for the local groups at Level 0 (g1
and g2). The next three cache entries are the nodes at Level 1 (u1,
g3, and g4), and the last entry is for the remote user at Level 2 (u3).

The cache also contains reverse mappings that allow the authen-
tication server to traverse the membership graph. The server creates
these extra mappings at the time it updates the cache.

3.2.3 Optimizations

The authentication server implements three performance optimiza-
tions. First, during each (hourly) update cycle, the local authentica-
tion server connects only once to each remote authentication server
and stores that connection for later use. Caching connections to
authentication servers avoids the public-key operations involved in
establishing a secure connection. For a large number of remote
users or a large remote group, the savings could be significant. (If
SFS used SSL-like session resumption [10, 16], the authentication
server would not need to implement this optimization manually.)

Second, authentication servers transfer only the changes that
were made to membership lists since the last update. This opti-
mization dramatically reduces the number of bytes a server must
fetch to update an existing cache entry. Because the authentica-
tion server’s cache is written to disk, even when the authentication
server first starts, it can benefit from this optimization.

The authentication server implements the incremental trans-
fer optimization using the Version number field present in group
records. The local authentication server sends the version number
corresponding to the record it has cached, and the remote authen-
tication server responds with the changes that have occurred since
that version. (When groups are updated, the server logs the changes
by version. If the log is lost or incomplete, the remote server sends
back the entire group.)

Third, remote authentication servers have the ability to transform
local user names (local to the remote server) into their correspond-
ing public key hashes before returning the membership list. In the
example above, when the local authentication server downloads the
group g4 from a remote server S, S could return p5 instead of u3. S
knows (or can quickly compute) p5 because it has the user record
for u3 in its database. This optimization eliminates the need for
local authentication servers to fetch the public keys separately for
each of those remote users; for groups containing a large number of
local users, these additional fetches could be noticeable. As noted
in Section 3.1.4, returning public keys also allows administrators to
obfuscate a group’s membership list. Because group owners want
to see user names when they manage their groups, the authentica-
tion server does not perform this transformation for authenticated
QUERY RPCs (QUERY RPCs from other authentication servers
are not authenticated).

3.2.4 Performance analysis

Two main factors contribute to the performance of updating the
cache: the number of bytes that the local authentication server

needs to fetch and the time required to traverse the containment
graph. A third factor that can affect performance is the number
of public key operations required to update the cache. The per-
formance of updating the cache depends on the resources available
both at the client and at the server.

The number of bytes required to download a single remote
group’s membership list depends on whether or not a copy exists
in the cache. If the authentication server does not have a cached
copy, the number of bytes is proportional to the size of the group.
If it does have a cached copy, the number of bytes is proportional
to the number of changes made to the group since the last update
cycle. The number of bytes required to fetch all of the remote users
and groups in the containment graph depends on the number of re-
mote users and groups.

The time required to update the cache depends on the configu-
ration of the containment graph. Because the authentication server
uses a breadth-first traversal, and it downloads each level of the
graph in parallel, the latency of the update will be the sum over the
maximum download latency at each level.

The number of public key operations (required to set up a new
secure connection) is equal to the number of unique servers appear-
ing in the containment graph. Secure connections are cached for an
entire update cycle.

3.2.5 Freshness
Aside from using only local information during authentication, the
next most important property of the system is freshness. The cache
update scheme has eventual consistency—once the update cycle is
over, the cache is completely up-to-date (assuming all servers were
available).

Given the trade-off between efficiency (using only local informa-
tion to issue credentials) and freshness, we chose efficiency. Delays
during file system access are not acceptable. Given the trade-off
between freshness and minimizing the time to update the cache,
we chose freshness. An earlier version of the authentication server
sought to reduce the amount of time that updates took to complete
by fetching records incrementally; we realized, however, that fresh-
ness was more important. The time required to complete an update
cycle is less critical because updating the cache is a background
process.

3.2.6 Revocation
Revocation is closely related to freshness. When a remote user
changes his key, or is removed from a remote group record, that
change will be reflected in the local cache at the end of the update
cycle.

For users who have their public key hashes on another user’s
group record or ACL (see Section 4.1), revocation is more involved.
If such a user wants to revoke his key, he must contact the user who
owns the group record or ACL where his key’s hash appears, and
ask that person to remove it. For this reason, indirecting through a
user name is often preferable (if possible).

Revoking the public keys of authentication servers is the most
difficult because their self-certifying hostnames might appear in
many group records. Section 8 suggest several possible solutions.

3.2.7 Scalability
We designed the authentication server and cache update scheme for
a file system context. A typical environment might be a large com-
pany or university with tens of thousands of users. Group sizes

could range from one or two members up to tens of thousands of
members.

For example, MIT’s Athena/AFS setup has 19 file servers hold-
ing user data, and a total of 20363 file sharing (pts) groups.2 The av-
erage number of members per group is 8.77. The number of groups
with n members, though, declines exponentially as n increases. In
fact, only 240 Athena groups have more than 100 members. Based
on these figures, the SFS authentication server is well-equipped to
handle authentication for a large institution, as demonstrated in Sec-
tion 6.

Though we expect the authentication server to scale to tens of
thousands of users and group members, we did not design it to scale
to millions. For example, naming all of the citizens of a country
or all Visa credit card holders might require a different technique.
Such large groups, however, would be unusual for a file system.

The authentication server does, however, need to operate
smoothly in the presence of malicious servers that might try to send
back an extremely large or infinite group. The local server simply
limits the number of users (public key hashes plus local user names)
that can appear in the transitive closure of a given local group. In
our current implementation, this limit is set to 1,000,000.

3.3 Credentials
Authentication is the process through which the authentication
server issues credentials on behalf of users. The user sends an au-
thentication request signed with his private key to the SFS server
he is trying to access. The SFS server hands this opaque block of
data to the authentication server as part of LOGIN, and the au-
thentication server verifies that the user’s public key (also part of
the authentication request) matches the signature. Given the user’s
public key, the authentication server uses its database to determine
the credentials. The authentication server supports three credential
types:

• Unix credentials are fields from /etc/passwd such as User
Name, UID, and GID. The authentication server only is-
sues Unix credentials to users who exists in the authentica-
tion database (i.e., registered SFS users who have local ac-
counts). Unix credentials play an important role in the default
SFS read-write file system which uses NFS/Unix file system
semantics for access control. The SFS remote execution facil-
ity uses Unix credentials for the user’s shell and home direc-
tory as well. The ACL-enabled file system looks only at the
User Name field of the Unix credentials (which comes from
the User Name field of the user’s record in the authentication
database).

• Public Key credentials are a text string containing an ASCII-
armored SHA-1 hash of the user’s public key (from his au-
thentication request).

• Group List credentials are a list of groups to which the user
belongs. Groups in this list correspond to group records in
the local authentication database (they do not contain self-
certifying hostnames).

The authentication server issues Unix credentials by looking in
the database for a user record with the user’s public key. If found,
the server constructs the Unix credentials from the user record,
/etc/passwd, and /etc/group.

2These numbers were accurate as of mid-June 2003.

Permission Effect on files Effect on directories

r read the file no effect
w write the file no effect
l no effect change to the directory and list its files
i no effect insert new files/dirs into the directory
d no effect delete files/dirs from the directory
a modify the file’s ACL modify the directory’s ACL

Figure 4: Access rights available in SFS ACLs

The authentication server issues Public Key credentials by sim-
ply hashing the user’s public key. Even a user who does not have a
user record in the authentication database receives Public Key cre-
dentials (provided he has a key pair loaded into his agent and the
signature on the authentication request can be verified).

The server issues Group List credentials by checking to see if the
user is a member of any local groups in the authentication database.
The server traverses the cached membership graph. If a path exists
from the user’s public key hash or local user name (for users that
have Unix credentials) to a local group, the authentication server
adds that group to the user’s Group List credentials.

4. ACLS AND AUTHORIZATION
Once the user has credentials, the various SFS servers can make
access control decisions based on those credentials. For example,
the default SFS read-write file system looks only at the Unix cre-
dentials and makes requests to the underlying file system as if they
were being issued by the local Unix user named in the credentials.

In the SFS ACL-enabled file system, access control is based on
all three credential types (Unix, Public Key and Group List). The
server checks the ACLs for the relevant files and/or directories to
determine if the request should be allowed to proceed.

The SFS ACL-enabled file system, described here and in Sec-
tion 5.2, is only one example of how a file system could use the
extended credentials that the authentication server provides. The
essential property that any file system needs is the ability to map
symbolic group names to access rights. The authentication server
never sees the details of this association; it simply issues creden-
tials in response to the LOGIN RPC from the file system. Recently,
Linux and FreeBSD have introduced extensions that add ACL sup-
port directly in their file systems. These new file systems might
provide an alternative to the SFS ACL-enabled file system.

4.1 ACL Entries
An ACL is a list of entries that specify what access rights the file
system should grant to a particular user or group of users. SFS
ACLs can contain one of four different types of entries. The first
three ACL entry types correspond to the credential types that the
authentication server can issue to a user.

• User Names provide a convenient way to name users with
Unix accounts on the local machine. User name ACL entries
are matched against the User Name field of Unix credentials.

• Group Names refer to SFS groups defined on the local au-
thentication server. Group name ACL entries are matched
against each of the groups in the Group List credentials.

• Public Key Hashes are ASCII-armored SHA-1 public key
hashes which are matched against the Public Key credentials.

• Anonymous is an ACL entry type that matches for all users
regardless of their credentials.

Remote users and group names cannot appear on ACLs directly.
Instead, users can define personal groups (prefixed by their user
names) on the authentication server and place remote user and
group names on the membership lists of those new groups. This
level of indirection provides a single location at which to place
the remote authentication server’s self-certifying hostname. If the
server’s public key changes or is revoked, users can update a sin-
gle group record instead of hundreds or thousands of ACLs spread
across the file system. Keeping self-certifying hostnames out of
ACLs also helps to keep them small.

4.2 Access rights
We adopted the AFS [18] ACL access rights but extended them to
differentiate between files and directories (AFS only has ACLs on
directories). Figure 4 lists the different permissions that an ACL can
contain and the meaning that each permission has. Unlike AFS, the
ACL server does not support negative permissions; once an ACL
entry grants a right to the user, another entry cannot revoke that
right.

5. IMPLEMENTATION
SFS clients and servers communicate using Sun RPC [30]. When
the client and server are located on different machines, the RPCs
travel over a transport that provides confidentiality, integrity and
authenticity [23]. This secure channel is set up using public-key
cryptography (with the public key hash in the self-certifying host-
name). On the same machine, SFS uses file descriptor passing to
hand off RPC connections.

5.1 Authentication server
The SFS authentication server implements an RPC interface (de-
scribed in Section 3.1.1) to its authentication database. To improve
scalability, the server has a Berkeley DB [3] backend, which al-
lows it to efficiently store and query groups with thousands of users.
By using a database, the authentication server can scale to tens of
thousands of users per group. The authentication server also uses
Berkeley DB to store its cache.

5.2 ACL-enabled file system
The SFS ACL-enabled file system is an extension of the SFS read-
write file system. Both variants store files on the server’s disk using
NFSv3 [8]. This technique offers portability to any operating sys-
tem that supports NFSv3 and avoids the need to implement a new
in-kernel file system.

$ sfskey group author1.sosp2003@stanford.edu,7yxnw38ths99hfpqnibfbdv3wqxqj8ap
Group Name: author1.sosp2003@stanford.edu,7yxnw38ths99hfpqnibfbdv3wqxqj8ap

ID: 100004
Version: 1
Owners: <none>

Members: u=author1
u=author2@cs.cmu.edu,fr2eisz3fifttrtvawhnygzk5k5jidiv
u=author3@berkeley.edu,5uvx79hddyqbrrjk6d5mx8zmgsujvmin

Audit: Last modified Fri, 21 Mar 2003 13.43.48 -0800 by author1@1.2.3.4

Figure 5: Using sfskey to view an SFS group.

5.2.1 Locating ACLs
The drawback to storing files on a standard Unix file system
(through NFS) is that Unix file systems do not provide a conve-
nient location to store ACLs. Our implementation stores file ACLs
in the first 512 bytes of the file and directory ACLs in a special file
in the directory called .SFSACL.

Our implementation decisions are motivated by the need to have
an efficient way to locate the ACL for a file system object given
an NFS request for that object. Because NFS requests contain file
handles and not path names, storing a mapping between path names
and ACLs in an external database indexed by path name was not
practical. Storing the ACLs in a database indexed by NFS file han-
dle would technically be possible, but it would impose constraints
on how one treated the underlying file system. Moving files around,
backups, and restores, for example, would all need to preserve disk-
specific meta data such as inode number to ensure that the NFS file
handles did not change (or tools would need to be written which
updated the ACL database appropriately).

To retrieve a file’s ACL, the SFS ACL file system server can
simply read the first 512-bytes of the file to extract its ACL. The
server hides the ACL’s existence from the client by doctoring the
NFS RPC traffic as it passes through the server (e.g., adjusting the
offset fields of incoming READ and WRITE requests and the
size field of the attributes returned in replies).

To retrieve a directory’s ACL, the ACL file system server issues
a LOOKUP request for the file .SFSACL in the given directory.
LOOKUP returns the NFS file handle for the .SFSACL file which
contains the directory’s ACL in its first 512-bytes. The server pro-
ceeds to read the ACL as in the file case above.

5.2.2 ACL Format
For rapid prototyping and to simplify debugging, we chose to use
a text-based format for the ACLs. A sample ACL for a directory
containing the text of an SOSP conference paper submission might
be

ACLBEGIN
sys:anonymous:rl:
group:author1.sosp2003:wlida:
ACLEND

The user author1 created a group on his local authentication
server and placed that group on the ACL for the directory with all of
the files related to the paper. Permissions such as r and w have no
effect on directories, but they are still important because any new
files created in this directory will inherit this ACL. Thus, users can

determine the default access permissions on files when they create
the directory.

The on-disk ACL representation could be more compact. In the
future, we may move to a binary format to encode the ACL.

5.2.3 Permissions

When the SFS ACL file system server receives an NFS request, it
retrieves the necessary ACL or ACLs and decides whether to permit
the request. The access rights required for a given request are based
on the type of that request and the object(s) involved. The SFS
client can determine these rights (for instance, when opening a file)
by issuing the NFSv3 ACCESS RPC. The SFS ACL file system
replies to ACCESS based on an object’s ACL.

File attributes still contain the standard Unix permission bits.
Though these bits are not used in determining file permissions, the
SFS ACL server sets them to the nearest approximation of the file’s
ACL. When the correct approximation is ambiguous, the server
uses more liberal permissions. Client applications might otherwise
fail due to a perceived lack of access rights even though the request
would actually succeed based on the ACL.

5.2.4 Caching

The ACL-enabled file system server maintains two internal caches
to improve performance. First, the server caches ACLs to avoid
issuing extra NFS requests to the underlying file system every time
it needs to retrieve an ACL. Because most NFS requests from the
client will require an ACL to decide access, the ACL cache could
reduce the number of extra NFS requests by a factor of two or more.

Second, the server caches the permissions granted to a user for
a particular ACL based on his credentials. The permissions cache
avoids reprocessing the ACL which might be expensive if the user
has many credentials (i.e., he is a member of many groups).

5.3 Usage
We provide several tools for manipulating groups and ACLs. Based
on the SOSP submission example given in Section 5.2.2, this sec-
tion demonstrates how to use the system.

We’ve extended the sfskey tool to view, create, and update
group lists on an authentication server. Figure 5 shows the output
of the view command.

A new tool, sfsacl, allows users to view and set ACLs from
their clients. The sfsacl program uses two special RPCs which
are not part of the standard NFS/SFS protocols; the ACL-enabled
file system server intercepts these RPCs and handles them directly

(instead of passing them to the underlying NFS loopback file sys-
tem). The SFS client software provides a way for sfsacl to obtain
both a connection to the ACL file server and the file handle of the
directory containing the ACL it wants to access. (The user accesses
a special file name in the directory, and the client file system soft-
ware creates a special symbolic link on-the-fly whose contents is
the desired file handle).

Aside from sfskey and sfsacl, all of the implementation is
on the server. The standard SFS read-write file system client is
completely compatible with the SFS ACL-enabled server.

6. EVALUATION
We provide an evaluation of the scalability of the authentication
server and the performance of the ACL-enabled file system.

6.1 Authentication server
The number of bytes that the authentication server must transfer to
update its cache depends on the number of remote records that it
needs to fetch. The number of bytes in each user record is essen-
tially constant. (Some fields such as the User Name and the Audit
String have a variable length, but the difference is small.) For each
group record, the number of bytes that the server needs to transfer
depends either on the size of the group (for new, uncached groups)
or the number of changes (for out-of-date, cached groups). We cur-
rently do not compress any network traffic, but compression could
produce significant savings.

An authentication server fetches a group record using the
QUERY RPC. Because our implementation fixes the maximum
size of a single RPC message, we limit the number of members
plus owners (for uncached groups) or the number of changes (for
cached groups) that are sent back in the reply to 250. Larger groups
require more than one QUERY RPC.

Connecting to the remote authentication server also requires two
RPCs to establish the secure channel. Because the implementation
caches connections, it only establishes one such channel per update
cycle; therefore, subsequent queries to a given authentication server
do not send these initial RPCs (or perform the associated public
key operations). The numbers given below do not include the bytes
transferred due to these RPCs, which total just over 900 bytes.

We ran two experiments to measure the number of bytes trans-
ferred when fetching group records. In the first experiment, the
local authentication server fetched the entire group because it did
not have a version in its cache. Unsurprisingly, the number of bytes
transferred scales linearly with group size. The total number of
groups transferred in this experiment was 1001. Each group con-
sisted of an increasing number of users: 0, 10, 20,. . . , 9990, 10000.
Users in this experiment were represented by the hashes of their
public keys (34 bytes each). The group names were all 16 bytes,
and the audit strings were 70 bytes. The owners list was empty.

In the second experiment, the local authentication server had a
cached copy of the group. As expected, the number of bytes trans-
ferred scales linearly with the number of changes to the group. In
this experiment, we varied the number of changes that the server
had to fetch from 0 to 9990 by ten. Each change was the addition of
a new user (35-bytes: the symbol “+” and a public key hash). Here,
the audit strings were slightly shorter (approximately 65 bytes).

The following table shows sample data from these experiments.
Q is the size of the RPC request, R is the size of the reply, M is
number of users in the group (or the number of of changes to the

group), S is the size of a single user (or change) and O is the RPC
overhead incurred for each additional 250 users. B is the total num-
ber of bytes transferred. All values (except for M) are in bytes.

To transfer Q R S M O B

0 users 72 136 40 0 216 208
10000 users 72 136 40 10000 216 408632
0 changes 72 108 40 0 180 180
1000 changes 72 108 40 1000 180 40720

The experimental results show that the total number of bytes
transferred for a particular group size or number of changes is given
by the following formula:

B = Q+R+(M×S)+
⌊

M
251

⌋
×O

The values of Q, R, S, and O are constants that depend on the char-
acteristics of the group, such as the length of member names or the
audit string.

These experiments also show that the RPC overhead is insignif-
icant. For example, to transfer 10000 users requires approximately
400 KB. The total RPC overhead is only

⌊ M
251

⌋×O = 8424 bytes,
which is just over 2% of the total bytes transferred.

These numbers demonstrate that the authentication server can
reasonably support the group sizes found on MIT Athena. The
largest Athena group has 1610 members. Based on the formula
above, the number of bytes required to transfer that group is 65904.

6.2 ACL-enabled file system
The ACL mechanism introduces a penalty in the overall perfor-
mance relative to the original SFS read-write file system. This
penalty is mainly due to the extra NFS requests that the ACL file
system needs to issue in order to locate and read (or write) the ACLs
associated with the incoming requests from the client.

6.2.1 Methodology
We measured file system performance between a server running
Linux 2.4.20 and a client running FreeBSD 4.8. The machines were
connected by 100 Mbit/s switched Ethernet. The server machine
had a 1 GHz Athlon processor, 1.5 GB of memory, and a 10,000
RPM SCSI hard drive. The client machine had a 733 MHz Pentium
III processor and 256 MB of memory.

We used the Sprite LFS small file micro benchmark [29] to de-
termine the performance penalty associated with our ACL mecha-
nism. The benchmark creates, reads, and deletes 1,000 1024-byte
files. The benchmark flushes the buffer cache, but we set the sizes
of the internal ACL and permission caches to large enough values
to make sure that entries were not flushed from the caches by the
time they were needed again. By ensuring that the caches do not
overflow during the test, we can better understand how the perfor-
mance penalty relates to the extra NFS calls and permissions checks
that are needed for access control. Using this test, we measured the
performance of the original SFS file system, the ACL-enabled file
system, and the ACL-enabled file system with the caches turned
off.

6.2.2 Results
Figure 6 shows the results of running the benchmark on the three
file system variants. The figure breaks down the best result of five
trials.

Original SFS ACL SFS with caching ACL SFS without caching
Phase seconds seconds (slowdown) seconds (slowdown)

create 15.9 18.1 (1.14X) 19.3 (1.21X)
read 3.4 3.5 (1.03X) 4.3 (1.26X)

delete 4.8 5.1 (1.06X) 6.0 (1.25X)
Total 24.1 26.7 (1.11X) 29.6 (1.23X)

Figure 6: LFS small file benchmark, with 1,000 files created, read, and deleted. The slowdowns are relative to the performance of the
original SFS.

In the create phase, the performance penalty is due mainly to the
extra NFS requests needed to write the ACL of each newly created
file. Processing the ACL to check permissions also contributes to
the performance penalty.

For the read and delete phases of the benchmark, the ACL cache
offers a noticeable performance improvement. The server can avoid
making NFS calls to retrieve ACLs because they are cached from
the create phase of the benchmark.

Figure 7 shows the cost of reading a file during the read phase of
the benchmark, expressed as the number of NFS RPCs to the loop-
back NFS server. Each READ request from the client is preceded
by a LOOKUP and an ACCESS. In the current implementation,
without caching, LOOKUP and ACCESS each require two extra
NFS RPCs to determine the directory’s ACL and the file’s ACL.
READ requires one extra RPC to determine the file’s ACL.

With caching enabled, the actual read-phase performance slow-
down (1.03X) basically agreed with the predicted slowdown
(1.00X). The difference is likely due to the overhead of cache
lookups.

With caching disabled, the actual slowdown (1.26X) was much
lower than the predicted slowdown (2.67X). We attribute this dis-
crepancy to the fact that the operating system on the server is read-
ing the entire file into its buffer cache when it reads the file’s ACL
(stored in its first 512-bytes). When the operating system reads the
file’s contents, it does not need to access the disk.

These experiments indicate that the additional NFS requests re-
quired to support ACLs result in a performance slowdown. We
chose the small file benchmark in particular to expose the perfor-
mance overhead of having to retrieve ACLs through NFS loopback.

We expect that many end-to-end applications will experience a
minimal performance impact due to the introduction of ACLs. For
example, we ran an experiment that involved unpacking, configur-
ing, compiling, and deleting an Emacs distribution on both the orig-
inal SFS and on the ACL-enabled SFS (with caching). We found
that the total slowdown was only 1.02X.

7. RELATED WORK
This section discusses the three main approaches to user authentica-
tion taken by previous systems: centralized authorities, certificate-
based systems, and systems that expose public keys.

7.1 Centralized authentication
The Kerberos authentication system [31] combined with the
AFS [18] file system provides a secure distributed file system with
centralized user authentication. Kerberos principals are organized
into realms which are usually defined along administrative bound-
aries. AFS has no mechanism to refer to remote principals; users
can only place principals that are in the local cell’s authentication

database in their ACLs. Cross-realm authentication through Ker-
beros allows remote users to appear on local ACLs but requires
the remote user to first register himself in the local realm. Regis-
tration only works if the two realms have been “joined” ahead of
time. Because Kerberos is based on shared-secret cryptography,
joining two realms is a complicated operation which requires coor-
dination between the two realm administrators. Kerberos itself has
no support for groups of principals. AFS has basic support for local
groups which can contain local principals; these groups can appear
on ACLs.

Microsoft Windows 2000 servers [24] support a sophisticated
distributed computing infrastructure based on collections of do-
mains. Windows domains combine to form domain trees and forests
(sets of domain trees under a single administrative authority), which
have automatic two-way transitive trust relationships between them
based on Kerberos V5. Administrators can manually set up ex-
plicit, non-transitive, one-way trust relationships between different
forests. Unlike SFS, the Windows domain system requires an orga-
nized trust infrastructure.

Windows 2000 supports several types of groups, each with dif-
ferent semantics and properties. Some groups can contain members
only from the local domain but can be placed on ACLs in other do-
mains. Other groups can contain members from other domains but
can be placed only on local ACLs. A third type of group can contain
members from any domain and can be placed on any ACL in the
domain tree, but these universal groups require global replication.
The Windows domain system uses this combination of group types
to reduce login time and limit the amount of replication required.
SFS provides a single group type, which can contain members de-
fined on any authentication server and which can be placed on any
group list (and thus any ACL).

7.2 Certificate-based systems

The Taos operating system [22, 34] and the Echo file system [4]
provide a secure distributed computing environment with global
naming and global file access. Echo supports globally named prin-
cipals (users) and groups on access control lists.

User authentication in Taos is based on certificate authorities
(CAs) which “speak for” named principals, issuing certificates
which map a public key (associated with a secure channel) to a
name. In a large system where not everyone trusts a single author-
ity, the CAs can be arranged into a tree structure which mirrors
the hierarchical name space. Authentication in such a system in-
volves traversing a path in the authority tree from one principal to
another through their least common ancestor. This traversal estab-
lishes a chain of trust through a series of CAs. Gasser et al. [17]
and Birrell et al. [5] discuss similar hierarchic authority trees and
suggest “symbolic links” or “cross-links” as a way to allow one CA

Original SFS ACL SFS with caching ACL SFS without caching
NFS request (NFS RPCs) (NFS RPCs) (NFS RPCs)

lookup 1 1 3
access 1 1 3
read 1 1 2
Total 3 3 8

Predicted slowdown 1.00X 1.00X 2.67X

Figure 7: Cost of reading a file during the read phase of the Sprite LFS small file benchmark, expressed as the number of NFS RPCs
to the loopback NFS server.

to directly certify another without traversing a path through their
common ancestor.

Taos certifies public keys using certificates and a simple proof
system. The SFS user authentication model does not use certifi-
cates or have CAs (in the traditional sense). Instead, SFS exposes
public keys to the user in two ways: group records and ACLs can
contain public key hashes, and remote user and groups names can
contain public keys of authentication servers in the form of self-
certifying hostnames. Taos, however, insists that ACLs contain
human-sensible names and relies on one or more CA to give mean-
ing to those names.

SPKI/SDSI [12, 28] provides a sophisticated, decentralized
public-key naming infrastructure that can be used in other sys-
tems, and it offers a number of advantages over strict hierarchical
PKIs, such as X.509 [36], and web-of-trust based systems such as
PGP [38]. SPKI/SDSI principals are essentially public keys, which
define a local name space. Users that want to authenticate them-
selves to a protected resource must prove they have access to that
resource by providing a certificate chain. SPKI/SDSI requires com-
plex proof machinery and algorithms to discover and validate cer-
tificate chains [9]. No truly distributed implementations of SDSI
exist because distributed chain discovery algorithms are difficult to
deploy.

SFS users name principals more directly using public keys and
self-certifying hostnames. SPKI/SDSI certificates (using meta data)
offer more fine-grained control than SFS can provide, but we argue
that in a file system context, public keys and self-certifying host-
names are sufficient. SDSI only uses local information (plus the
client-provided certificate chain) to decide group membership; SFS
also takes this approach of not contacting other entities when issu-
ing credentials.

CRISIS [2], the security component of WebOS [32], is also a
certificate-based system, which itself is based heavily on the Taos
authentication architecture. Unlike Taos (but like SDSI), principals
who want to authenticate to a server are responsible for presenting
to the server all of the necessary certificates. The server verifies the
signatures on these certificates by making sure that the public keys
are endorsed by trusted CAs. CAs are arranged hierarchically, and
the server checks that there exists a path of trust through this CA hi-
erarchy from the local domain to the domain of each of the signing
principals. Principals can create new groups by issuing an identity
certificate for the group and then signing transfer certificates to all
of the group’s members.

The Snowflake project [19] extends the SPKI [11] implemen-
tation by Morcos [26] in several ways to provide end-to-end au-
thorization across administrative boundaries, levels of abstraction,
and existing protocols. Snowflake is also based on the Taos model.
End points, rather than intermediary nodes, make all the authoriza-
tion decisions. In this way, the end point receives requests for au-

thorization unadulterated by intermediary nodes such as protocol
translators. Our approach with SFS also follows an end-to-end au-
thorization model, but does not require a separate PKI, which in
Snowflake adds 60 msec to the 50 msec required to send a request
over SSL [10, 16].

The Grid Security Infrastructure (GSI) [7, 15], part of the
Globus [14] project, is designed to provide inter-domain authen-
tication and authorization in a distributed computing environment.
GSI is a certificate/CA-based system which uses certificate chains
to authenticate entities. A central idea in GSI is that users can have
both local and global identities. GSI authenticates the user’s global
name and then maps it onto a site-specific, local one. The site’s
local security infrastructure (e.g., Kerberos) can authorize access
to resources based on the local name that it knows. GSI provides
a way for sites to retain independent control of their resources but
still participate in a global computing environment.

The Web allows individuals to use personal SSL certificates to
authenticate to Web sites. These personal certificates are used rarely
in practice, however, because no universally accepted public key
infrastructure exists to issue and verify them. Instead, Web site rely
on local databases, passwords, and “cookies” to authenticate users.

OceanStore [21] is a wide-area file system that has adapted self-
certifying hostnames to name objects but uses the locally linked
name spaces from the SDSI framework for secure bindings.

7.3 Exposing Public Keys
The idea of exposing public keys to users has its basis in earlier sys-
tems. PGP [38] first popularized this idea by providing a standard
way to encode and distribute PGP public keys. PGP fingerprints
(hashes of the public key) give users a convenient way to verify
keys they obtain with the keys’ owners. PGP key servers provide a
centralized location for and interface to key distribution.

SSH [37] also allows users to directly manipulate public keys
in the context of remote login. SSH keeps an ASCII version of
the user’s public in a file called (historically) identity.pub
in the user’s home directory. By placing the contents of this file
into the authorized_keys file on a remote machine, the user
can use public-key cryptography to authenticate to the server. The
authorized_keys file acts like an ACL for remote login.

In the context of file systems, Farsite [1] uses ACLs to authorize
write access for users to directory groups. These ACLs contain the
public keys of users who are permitted to write to the directory and
its files. Farsite, however, does not cross administrative domains;
its target is a large corporation or university.

CapaFS [27] and DisCFS [25] use capabilities to provide re-
mote users with access to the local file system. In these systems,
like SFS, users do not need an account on the local file server in
order to access files. SFS, however, uses ACLs to perform access

control, providing users with a more traditional file sharing inter-
face. File owners share files by creating groups, adding users (or
other groups) to those groups, and then placing those groups on
ACLs. Clients can access files as usual (i.e., they do not need to
present per-file or per-directory capabilities).

LegionFS [33] is a wide-area file system that embeds public keys
into object names, similar to self-certifying hostnames. It also pro-
vides ACLs for objects, with permissions per object method. A
LegionFS client can dynamically modify whether secure commu-
nication should be used or not. The paper is unclear, however, if
LegionFS can name users and groups securely.

8. FUTURE WORK
Currently, the authentication server updates its cache once per hour.
We would like to add the ability to update cache entries more or less
frequently by including a refresh value with each user and group
record, as in DNS. Local authentication servers can use this value
to see if the entry needs updating before fetching it again; conse-
quently, remote administrators can control the freshness of cached
public key hashes and membership lists. Records would also in-
clude a timeout value that tells local servers how long to keep us-
ing a cache entry if they cannot contact the remote authentication
server.

Remote user and group names provide a level of indirection so
that a user’s public key can be stored in a single location. Self-
certifying hostnames for authentication servers, however, can ap-
pear in multiple group records. If the server’s key changes and the
old key needs to be revoked, each of those records needs to be up-
dated. The SFS file system uses symbolic links to add a level of
indirection so that users do not need to refer to servers by their self-
certifying hostnames. The authentication database might also allow
users to name remote authentication servers through symbolic links
in the file system. When refreshing the cache, the server would
traverse the symbolic links to determine the self-certifying host-
name of the remote authentication server. To change or revoke the
server’s key, one needs only to change a single symbolic link.

Simply revoking a key for an authentication server (as opposed
to changing it) is potentially an easier problem. First, authentica-
tion servers can maintain revocation lists of keys that are no longer
valid. Second, during the periodic cache refreshes, the authen-
tication servers could exchange SFS-style key revocation certifi-
cates [23]. These certificates are self-authenticating in that they
are signed with the private key of the server whose key is being re-
voked; therefore, the receiving authentication server does not need
to worry about the trustworthiness of the server from which the cer-
tificate came. Once the authentication server verifies the revocation
certificate, it can add that key to its personal revocation list and
refuse to contact remote authentication servers with that key.

The authentication server and ACL-enabled file system support
user-centric trust; individual users can set up trust relationships by
placing remote principals into local groups. In many environments
(e.g., academia or free-software development communities), this
flexibility is welcome. In some environments (e.g., large corpora-
tions), administrators might want to have a site policy that restricts
users from naming certain remote principals. SFS could provide ad-
ministrators with this ability by allowing them to install blacklists
or whitelists. These lists could have patterns that the authentication
server matches against remote principals before fetching them.

9. CONCLUSION
This paper contributes a new design point in the space of user au-
thentication. We sacrifice generality for ease-of-use and simplicity
of implementation. Our system combines the ease-of-use found in
centralized authentication systems with the unified naming seman-
tics for remote principles common in designs based on certifica-
tion hierarchy. Our authentication server lacks the generality found
in certificate-based systems, but it benefits from a simpler imple-
mentation, which does not require an infrastructure for managing
certificates. By pre-fetching and caching remote principals, au-
thentication servers can issue credentials without contacting remote
sites during file access. Experiments demonstrate that the server
can scale to groups with tens of thousands of users. The imple-
mentation is part of the open-source SFS distribution, available at
http://www.fs.net/.

10. ACKNOWLEDGMENTS
We are grateful to our shepherd Ted Wobber for his valuable in-
put and feedback. We also thank Chuck Blake, Butler Lampson
and the anonymous reviewers for their comments and suggestions.
This research was supported by the Defense Advanced Research
Projects Agency (DARPA) and the Space and Naval Warfare Sys-
tems Center, San Diego, under contract #N66001-01-1-8927, and
MIT Project Oxygen.

REFERENCES
[1] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cer-

mak, Ronnie Chaiken, John R. Douceur, Jon Howell, Jacob R.
Lorch, Marvin Theimer, and Roger P. Wattenhofer. FARSITE:
Federated, available, and reliable storage for an incompletely
trusted environment. In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation, pages 1–14,
Boston, MA, December 2002.

[2] Eshwar Belani, Amin Vahdat, Thomas Anderson, and
Michael Dahlin. The CRISIS wide area security architecture.
In Proceedings of the 7th USENIX Security Symposium, pages
15–30, San Antonio, TX, January 1998.

[3] Berkeley DB. http://www.sleepycat.com/.
[4] Andrew D. Birrell, Andy Hisgen, Chuck Jerian, Timothy

Mann, and Garret Swart. The Echo distributed file system.
Technical Report 111, Digital Systems Research Center, Palo
Alto, CA, September 1993.

[5] Andrew D. Birrell, Butler W. Lampson, Roger M. Needham,
and Michael D. Schroeder. A global authentication service
without global trust. In Proceedings of the 1986 IEEE Sympo-
sium on Security and Privacy, pages 223–230, Oakland, CA,
1986.

[6] Andrew D. Birrell, Roy Levin, Roger M. Needham, and
Michael D. Schroeder. Grapevine: An exercise in distributed
computing. Communications of the ACM, 25(4):260–274,
April 1982.

[7] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke,
J. Volmer, and V. Welch. A national-scale authentication in-
frastructure. IEEE Computer, 33(12):60–66, 2000.

[8] B. Callaghan, B. Pawlowski, and P. Staubach. NFS version 3
protocol specification. RFC 1813, Network Working Group,
June 1995.

[9] Dwaine Clarke. SPKI/SDSI HTTP server/certificate chain
discovery in SPKI/SDSI. Master’s thesis, Massachusetts In-
stitute of Technology, September 2001.

[10] T. Dierks and C. Allen. The TLS protocol. RFC 2246, Net-
work Working Group, January 1999.

[11] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
and T. Ylönen. SPKI certificate theory. RFC 2693, Network
Working Group, September 1999.

[12] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest,
Brian M. Thomas, and Tatu Ylönen. SPKI certificate docu-
mentation. Work in progress, from http://www.pobox.
com/~cme/html/spki.html, 2002.

[13] FIPS 180-1. Secure Hash Standard. U.S. Department of
Commerce/N.I.S.T., National Technical Information Service,
Springfield, VA, April 1995.

[14] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit. Intl J. Supercomputer Applications, 11
(2):115–128, 1997.

[15] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A se-
curity architecture for computational grids. In Proceedings
of the 5th ACM Conference on Computer and Communica-
tions Security Conference, pages 83–92, San Francisco, CA,
November 1998.

[16] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL
protocol version 3.0. Internet draft (draft-freier-ssl-version3-
02.txt), Network Working Group, November 1996. Work in
progress.

[17] Morrie Gasser, Andy Goldstein, Charlie Kaufman, and But-
ler Lampson. The Digital distributed system security ar-
chitecture. In Proceedings of the 12th NIST-NCSC Na-
tional Computer Security Conference, pages 305–319, Bal-
timore, MD, October 1989. URL citeseer.nj.nec.
com/gasser89digital.html.

[18] John H. Howard, Michael L. Kazar, Sherri G. Menees,
David A. Nichols, M. Satyanarayanan, Robert N. Side-
botham, and Michael J. West. Scale and performance in a
distributed file system. ACM Transactions on Computer Sys-
tems, 6(1):51–81, February 1988.

[19] Jon Howell and David Kotz. End-to-end authorization. In
Proceedings of the 4th Symposium on Operating Systems De-
sign and Implementation, pages 151–164, San Diego, CA,
October 2000.

[20] Michael Kaminsky, Eric Peterson, Kevin Fu, David Mazières,
and M. Frans Kaashoek. REX: Secure, modular remote exe-
cution through file descriptor passing. Technical Report MIT-
LCS-TR-884, MIT Laboratory for Computer Science, Jan-
uary 2003.

[21] John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton,
Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim
Weatherspoon, Westley Weimer, Christopher Wells, and Ben
Zhao. Oceanstore: An architecture for global-scale persis-
tent storage. In Proceedings of the 9th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, pages 190–201, November 2000.

[22] Butler Lampson, Martín Abadi, Michael Burrows, and Ed-
ward P. Wobber. Authentication in distributed systems: The-
ory and practice. ACM Transactions on Computer Systems,
10(4):265–310, 1992.

[23] David Mazières, Michael Kaminsky, M. Frans Kaashoek, and
Emmett Witchel. Separating key management from file sys-
tem security. In Proceedings of the 17th ACM Symposium
on Operating Systems Principles, pages 124–139, Kiawah Is-
land, SC, 1999.

[24] Microsoft Windows 2000 Advanced Server Documenta-
tion. http://www.microsoft.com/windows2000/
en/advanced/help/.

[25] Stefan Miltchev, Vassilis Prevelakis, Sotiris Ioannidis, John
Ioannidis, Angelos D. Keromytis, and Jonathan M. Smith. Se-
cure and flexible global file sharing. In Proceedings of the
USENIX 2003 Annual Technical Conference, Freenix Track,
pages 165–178, San Antonio, TX, June 2003.

[26] Alexander Morcos. A java implementation of simple
distributed security infrastructure. Master’s thesis, Mas-
sachusetts Institute of Technology, May 1998.

[27] Jude Regan and Christian Jensen. Capability file names: Sep-
arating authorisation from user management in an internet file
system. In Proceedings of the 10th USENIX Security Sympo-
sium, pages 221–234, Washington, D.C., 2001.

[28] Ronald L. Rivest and Butler Lampson. SDSI—a sim-
ple distributed security infrastructure. Working doc-
ument from http://theory.lcs.mit.edu/~cis/
sdsi.html, 2002.

[29] M. Rosenblum and J. Ousterhout. The design and imple-
mentation of a log-structured file system. In Proceedings of
the 13th ACM Symposium on Operating Systems Principles,
pages 1–15, Pacific Grove, CA, October 1991.

[30] R. Srinivasan. RPC: Remote procedure call protocol specifi-
cation version 2. RFC 1831, Network Working Group, August
1995.

[31] J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An
authentication service for open network systems. In Proceed-
ings of the Winter 1988 USENIX, pages 191–202, Dallas, TX,
February 1988.

[32] Amin Vahdat. Operating System Services for Wide-Area Ap-
plications. PhD thesis, Department of Computer Science,
University of California, Berkeley, December 1998.

[33] Brian S. White, Michael Walker, Marty Humphrey, and An-
drew S. Grimshaw. LegionFS: A secure and scalable file sys-
tem supporting cross-domain high-performance applications.
In Proceedings of the IEEE/ACM Supercomputing Conference
(SC2001), November 2001.

[34] Edward P. Wobber, Martín Abadi, Michael Burrows, and But-
ler Lampson. Authentication in the Taos operating system.
ACM Transactions on Computer Systems, 12(1):3–32, 1994.

[35] Thomas Wu. The secure remote password protocol. In Pro-
ceedings of the 1998 Internet Society Network and Distributed
System Security Symposium, pages 97–111, San Diego, CA,
March 1998.

[36] X.509. Recommendation X.509: The Directory Authentica-
tion Framework. ITU-T (formerly CCITT) Information tech-
nology Open Systems Interconnection, December 1988.

[37] Tatu Ylönen. SSH – secure login connections over the Inter-
net. In Proceedings of the 6th USENIX Security Symposium,
pages 37–42, San Jose, CA, July 1996.

[38] Philip Zimmermann. PGP: Source Code and Internals. MIT
Press, 1995.

