Chapter 5

Worst-Case Event Systems

Distributed Computing Group

Discrete Event Systems
Winter 2006 / 2007
Overview: Worst-Case Analysis of DES

- Ski Rental
 - Randomized Ski Rental
 - Lower Bounds

- The TCP Acknowledgement Problem
- The TCP Congestion Control Problem
 - Bandwidth in a Fixed Interval
 - Multiplicatively Changing Bandwidth
 - Changes with Bursts

- Many application domains are not Poisson distributed!
 - sometimes it makes sense to assume that events are distributed in the worst possible way (e.g. in networks, packets often arrive in bursts)
Theory of Renting Skis

• Scenario
 – you start a new hobby, e.g. skiing
 – you don’t know whether you will like it
 – expensive equipment ~ 1 kFr

• 3 Alternatives
 – just buy a new equipment (optimistic)
 – always renting (pessimistic)
 – first rent it a few times before you buy (down-to-earth)

• You choose the pragmatic way, but Murphy’s law will strike!
 – first you rent, but as soon as you buy, you will lose interest in skiing
Ski Rental Problem

- Expenses
 - buying: 1 kFr
 - renting: 1 kFr per month

- Scenario
 - first rent it for \(z \) months, then buy it.
 - after \(u \) months you will lose your interest in skiing

2 cases:

\[
\begin{align*}
 u \leq z & \rightarrow \text{cost}_z(u) = u \text{ kFr} \\
 u > z & \rightarrow \text{cost}_z(u) = (z + 1) \text{ kFr}
\end{align*}
\]

- If you are a clairvoyant, then …

\[
\begin{align*}
 u \leq 1 \text{ month} & \rightarrow \text{just renting is better} \rightarrow \text{cost}_{\text{opt}}(u) = u \text{ kFr} \\
 u > 1 \text{ month} & \rightarrow \text{just buying is better} \rightarrow \text{cost}_{\text{opt}}(u) = 1 \text{ kFr} \\
 & \rightarrow \text{cost}_{\text{opt}}(u) = \min(u, 1)
\end{align*}
\]
Competitive Analysis

• Definition
An online algorithm A is c-competitive if for all finite input sequences I
\[
\text{cost}_A(I) \leq c \text{cost}_{opt}(I) + k
\]
where k is a constant independent of the input.
If $k = 0$, then the online algorithm is called strictly c-competitive.

• When strictly c-competitive, it holds
\[
\frac{\text{cost}_A(u)}{\text{cost}_{opt}(u)} \leq c
\]

• Example
 – Ski rental is strictly 2-competitive. The best algorithm is $z = 1$.

Discrete Event Systems – C. Stamm / R. Wattenhofer 5/5
Randomized Ski Rental

- Deterministic Algorithm
 - has a big handicap, because the adversary knows z and can always present a u which is worst-case for the algorithm
 - only hope: algorithm makes random decisions

- Randomized Algorithm
 - chooses randomly between 2 values z_1 und z_2 (with $z_1 < z_2$) with probabilities p_1 and $p_2 = (1 - p_1)$

$$cost_A(u) = \begin{cases} u & \text{if } u \leq z_1 \\ p_1 \cdot (z_1 + 1) + p_2 \cdot u & \text{if } z_1 < u \leq z_2 \\ p_1 \cdot (z_1 + 1) + p_2 \cdot (z_2 + 1) & \text{if } z_2 < u \end{cases}$$

- Example
 - $z_1 = \frac{1}{2}$, $z_2 = 1$, $p_1 = 2/5$, $p_2 = 3/5$
 - $E[c] = \frac{cost_A}{cost_{opt}} = 1.8$

What about choosing randomly between more than 2 values???
Randomized Ski Rental with infinitely many Values (1)

- Let $r(u, z)$ be the competitive ratio for all pairs of u and z
- We are looking for the expected competitive ratio $E[c]$
- Adversary chooses u with uniform distribution

$$E[c] = \frac{\iiint r(u, z)dzdu}{\iiint dzdu}$$

$$= \frac{1}{2} + \int_{u=0}^{1} \int_{z=0}^{u} \frac{z+1}{u} dzdu$$

$$= 1.75$$
Randomized Ski Rental with infinitely many Values (2)

- Algorithm chooses \(z \) with probability distribution \(p(z) \)
 - it chooses \(p(z) \) such that it minimizes \(E[c] \)
- Adversary chooses \(u \) with probability distribution \(d(u) \)
 - it chooses \(d(u) \) such that it maximized \(E[c] \)

\[
E[c] = \frac{\int_0^1 \int_0^u (z + 1)p(z)d(u)dzdu + \int_0^1 \int_u^1 up(z)d(u)dzdu}{\int_0^1 \int_0^1 up(z)d(u)dzdu}
\]

\[
\int p(z) = \int d(u) = 1
\]

- This is a very hard task!

\(\rightarrow \) We should make the problem independent of the adversarial distribution \(d(u) \).
Randomized Ski Rental with infinitely many Values (3)

• Idea
 Choose the algorithm’s probability function $p(z)$ such that $\text{cost}_A(u) \leq c \text{cost}_{opt}(u)$ for all u
 \rightarrow adversarial distribution $d(u)$ doesn’t matter anymore

$\text{cost}_{opt}(u) = u$ for all u between 0 und 1

$$\int_0^u (z + 1)p(z)\,dz + \int_u^1 u \cdot p(z)\,dz \leq c \cdot u$$

with $\int_0^1 p(z)\,dz = 1$

• Having a hunch: the best probability function $p(z)$ will be an equality
 \rightarrow With $p(z) = \frac{e^z}{e-1}$ we have an algorithm that is $\frac{e}{e-1}$-competitive in expectation.
Can we get any better???

→ Lower Bounds

• Von Neumann / Yao Principle

 Choose an distribution over problem instances (for ski rental, e.g. \(d(u)\)). If for this distribution all deterministic algorithms cost at least \(c\), the \(c\) is a lower bound for the best possible randomized algorithm.

• Ski Rental

 – we are in a lucky situation, because we can parameterize all possible deterministic algorithms by \(z \geq 0\)

 – choose a distribution of inputs with \(d(u) \geq 0\) and \(\int d(u) = 1\)

• Example

 \(d(u) = \frac{1}{2}\) for \(0 \leq u \leq 1\) and \(d(\infty) = \frac{1}{2}\)

 \(\rightarrow\) \(cost_{z=0}(d(u)) = 1\) \hspace{1cm} \(cost_{z \leq 1}(d(u)) \geq 1\)

 \(\rightarrow\) \(cost_{z=1}(d(u)) = 5/4\) \hspace{1cm} \(cost_{z > 1}(d(u)) > 5/4\) \hspace{1cm} \(\rightarrow c = 1\)

 \(\rightarrow\) \(cost_{opt}(d(u)) = \frac{3}{4}\)

 \(\rightarrow c / cost_{opt} = 4/3 = 1.33\)
TCP: Transmission Control Protocol

- Layer 4 Networking Protocol
 - transmission error handling
 - correct ordering of packets
 - exponential ("friendly") slow start mechanism: should prevent network overloading by new connections
 - flow control: prevents buffer overloading
 - congestion control: should prevent network overloading
Packet Acknowledgment

Sender
- Sequence number in packet header
- “Window” of up to N consecutive unack’ed packets allowed

$\text{send_base} \quad \text{nextseqnum}$

- send_base: lower bound of window
- nextseqnum: highest sequence number acknowledged

already ack’ed
sent, not yet ack’ed
usable, not yet sent
not usable

- $\text{ACK}(n)$: ACKs all packets up to and including sequence number n
 - a.k.a. cumulative ACK
 - sender may get duplicate ACKs

- timer for each in-flight packet
- $\text{timeout}(n)$: retransmit packet n and all higher seq# packets in window
The TCP Acknowledgment Problem

• Definition
 The receiver’s goal is a scheme which minimizes the number of acknowledgments plus the sum of the latencies for each packet, where the latency of a packet is the time difference from arrival to acknowledgment.

• Given
 n packet arrivals, at times: \(a_1, a_2, \ldots, a_n\)
 k acknowledgments, at times \(t_1, t_2, \ldots, t_n\)
 latency\((i) = t_j - a_i\), where \(j\) such that \(t_{j-1} < a_i \leq t_j\)

• Minimize
 \[k + \sum_{i=1}^{n} \text{latency}(i)\]
The TCP Acknowledgment Problem: $z=1$ Algorithm (1)

- $z = 1$ Algorithm is: Whenever a rectangle with area $z = 1$ does fit between the two curves, the receiver sends an acknowledgement, acknowledging all previous packets.
The TCP Acknowledgment Problem: z=1 Algorithm (2)

• Lemma
 – The optimal algorithm sends an ACK between any pair of consecutive ACKs by algorithm with z = 1.

• Proof
 – For the sake of contradiction, assume that, among all algorithms who achieve the minimum possible cost, there is no algorithm which sends an ACK between two ACKs of the z = 1 algorithm.
 – We propose to send an additional ACK at the beginning (left side) of each z = 1 rectangle. Since this ACK saves latency 1, it compensates the cost of the extra ACK.
 – That is, there is an optimal algorithm who chooses this extra ACK.
The TCP Acknowledgment Problem: z=1 Algorithm (3)

• Theorem: The z = 1 algorithm is 2-competitive.

• Similarity to Ski Rental
 – it’s possible to choose any z
 – if you wait for a rectangle of size z with probability \(p(z) = \frac{e^z}{(e-1)} \)
 \(\rightarrow \) randomized TCP ACK solution, which is \(\frac{e}{(e-1)} \) competitive
Simple TCP Congestion Scenario

- two equal senders, two receivers
- one router with infinite buffer space and with service rate C
- large delays when congested
- maximum achievable throughput

Too many sources sending too much data too fast for *network* to handle

Discrete Event Systems – C. Stamm / R. Wattenhofer 5/17
The TCP Congestion Control Problem

• Main Question
 How many packets per second can a sender inject into the network without overloading it?

• Assumptions
 – sender does not know the bandwidth between itself and the receiver
 – the bandwidth might change over time

• Model
 – time divided into periods \(\{ t \} \)
 – unknown bandwidth threshold \(u_t \)
 – sender transmits \(x_t \) packets

• Gain Function
 – \(x_t \leq u_t \rightarrow \text{gain}_t = x_t \)
 – \(x_t > u_t \rightarrow \text{gain}_t = 0 \)
Competitive Analysis (2)

• Definition
 An online algorithm A is strictly c-competitive if for all finite input sequences I
 \[\text{cost}_A(I) \leq c \text{ cost}_{opt}(I), \text{ or} \]
 \[c \text{ gain}_A(I) \geq \text{ gain}_{opt}(I). \]

• The Dynamic Model
 – algorithm: chooses a sequence \(\{ x_t \} \)
 – adversary: knows the algorithm’s sequence and chooses a sequence \(\{ u_t \} \)

• Problem
 – Adversary is too strong: \(\forall t: u_t < x_t \Rightarrow \text{gain}_A = 0 \)

• Restrictions
 – Bandwidth in a fixed interval: \(u_t \in [a, b] \)
 – Multiplicatively changing bandwidth
 – Changes with bursts
Bandwidth in a Fixed Interval: Deterministic Algorithm

• Preconditions
 – adversary chooses $u_t \in [a, b]$
 – algorithm is aware of the upper bound b and the lower bound a

• Deterministic Algorithm
 – If the algorithm plays $x_t > a$ in round t, then the adversary plays $u_t = a$.
 \rightarrow gain = 0
 – Therefore the algorithm must play $x_t = a$ in each round in order to have at least gain = a.
 – The adversary knows this, and will therefore play $u_t = b$.
 – Therefore, $\text{gain}_{\text{Alg}} = a$, $\text{gain}_{\text{opt}} = b$, competitive ratio $c = b/a$.
Bandwidth in a Fixed Interval: Randomized Algorithm

• Let’s try the ski rental trick!
 – For all possible inputs \(u \in [a, b] \) we want the same competitive ratio:
 \[
 c \text{ gain}_{\text{Alg}}(u) = \text{gain}_{\text{opt}}(u) = u
 \]

• Randomized Algorithm
 – We choose \(x = a \) with probability \(p_a \), and any value in \(x \in (a, b) \) with
 probability density function \(p(x) \), with
 \[
 p_a + \int_a^b p(x) \, dx = 1.
 \]

• Theorems
 – There is an algorithm that is \(c \)-competitive, with \(c = 1 + \ln(b/a) \).
 – There is no randomized algorithm which is better than \(c \)-competitive, with
 \(c = 1 + \ln(b/a) \).

• Remark
 – Upper and lower bound are tight.
Multiplicatively Changing Bandwidth

• Preconditions
 – adversary chooses u_{t+1} such that $u_t/\mu \leq u_{t+1} \leq \mu u_t$, with $\mu \geq 1$, e.g. 1.05
 – algorithm knows u_1 and μ

• Algorithm A_1
 – after a successful transmission in period t, the algorithm chooses $x_{t+1} = \mu x_t$
 – otherwise: $x_{t+1} = x_t/\mu^3$

• Theorem
 – The algorithm A_1 is $(\mu^4 + \mu)$-competitive

• Algorithm A_2
 – after a successful transmission in period t, the algorithm chooses $x_{t+1} = \mu x_t$
 – otherwise: $x_{t+1} = x_t/2$

• Theorem
 – The algorithm A_2 is (4μ)-competitive
Changes with Bursts

- **Bursty Adversary**
 - 2 parameters: $\mu \geq 1$ and maximum burst factor $B \geq 1$
 - adversary chooses u_{t+1} from the interval $[\frac{u_t}{\beta_{t+1}}, u_t \cdot \beta_t \cdot \mu]$
 where $\beta_t = \min\{B, \beta_{t-1} \frac{\mu}{c_{t-1}}\}$ is the burst factor at time t and
 where $c_{t-1} = u_t/u_{t-1}$ if $u_t > u_{t-1}$ and u_{t-1}/u_t otherwise