
1

Improving Gnutella

Willy Henrique Säuberli

Seminar in Distributed Computing, 16. November 2005

Papers:

I. Making Gnutella-like P2P Systems Scalable; SIGCOMM 2003

II. Peer-to-Peer Overlays: Structured, Unstructured, or Both?
MSR-TR-2004-73 2004

III. Should We Build Gnutella on a Structured Overlay?

HotNets-II 2004

2

Motivation
In the spring of 2000, when Gnutella was a hot topic on

everyone's mind, a concerned few of us in the open-
source community just sat back and shook our heads.
Something just wasn't right. Any competent network
engineer that observed a running gnutella application
would tell you, through simple empirical observation
alone, that the application was an incredible burden
on modern networks and would probably never
scale. I myself was just stupefied at the gross abuse of
my limited bandwidth,

Jordan Ritter - Why Gnutella Can't Scale. No, Really.

3

Overview
• Systems

– Gnutella 0.4
– Gnutella 0.6
– Pastry/DHT (Distributed Hash Table)

• Gia
– Topology adaptation
– Flow Control
– One-hop Replication
– Search Protocol
– Evaluation

• Structural Gnutella
– Overhead of maintaining structured/unstructured overlay
– Overhead of queries in structured/unstructured overlay

• Conclusions
4

Gnutella 0.4

Original Gnutella Specification:
• Acquisition of addresses is not part of the protocol

-> Host cache services predominant way

• TCP/IP connection to servant and ASCII string sent:
GNUTELLA CONNECT/<protocol version string>\n\n

• Servant response
GNUTELLA OK\n\n (anything else interpreted as rejection)

• Sending of any of Gnutella protocol descriptors
• -> file requests done over http requests

5

Gnutella 0.4
Gnutella Protocol descriptors:
Descriptor Header:

1 15 16 17 18 19 22

Possible descriptors:
PING: empty payload (probe for servants)
PONG: port, IP,#files,#KB (response to PING)
QUERY: minimum speed, search criteria
QUERYHIT: #hits, port, IP, speed, result set, servant identifier
PUSH: servant identifier, file index, port, IP (if firewalled)

Descriptor
ID

TTLPayload
Descriptor

Hops Payload
length

6

Gnutella 0.4

Descriptor Routing

• PONG carried along same path like PING

• QueryHit carried along same path like Query

• PUSH carried along same path like QueryHit

• PING and Query forwarded to all connected
servants, except the one that sent

• Servant decrements TTL and increments Hops field

• Servants avoids forwarding descriptors with ID
already seen.

2

7

Gnutella 0.4
IP: 53.7.41.104

Q

QQ

Q

Q

Q

Q

Q

Q Q
Q

Q

H Q

Q

H

Q

H

H
Q

QQ

H H

Q

H H

8

Gnutella 0.4

Problems

1. Flooding -> queries received several times

2. Churn -> high rate of joining and leaving

3. Node Overloading -> to much connections

4. No bootstrapping in protocol (mostly done
central)

5. No load balancing -> queries, downloads

9

Overview
• Systems

– Gnutella 0.4
– Gnutella 0.6
– Pastry/DHT (Distributed Hash Table)

• Gia
– Topology adaptation
– Flow Control
– One-hop Replication
– Search Protocol
– Evaluation

• Structural Gnutella
– Overhead of maintaining structured/unstructured overlay
– Overhead of queries in structured/unstructured overlay

• Conclusions
10

Gnutella 0.6

• The Ultra peer system has been found effective for
this purpose. It is a scheme to have a hierarchical
Gnutella network by categorizing the nodes on the
network as leaves and ultra peers. A leaf keeps
only a small number of connections open, and that
is to ultra peers. An ultra peer acts as a proxy to
the Gnutella network for the leaves connected to it.
This has an effect of making the Gnutella network
scale, by reducing the number of nodes on the
network involved in message handling and routing,
as well as reducing the actual traffic among them.

RFC-Gnutella 0.6 - Chapter 2.3, Leaf Mode and Ultrapeer Mode

11

Gnutella 0.6

Improvements:

• GWebCache for addresses

• X-Try header (for rejected connection)

• host addresses stored in pong messages

• store addresses from QueryHit in local cache

• Nodes classified as Peers and Leaves

12

Gnutella 0.6

requirements for Ultrapeers:

• no firewall

• suitable operating system

• sufficient bandwidth

• sufficient uptime

• sufficient RAM and CPU

3

13

Overview
• Systems

– Gnutella 0.4
– Gnutella 0.6
– Pastry/DHT (Distributed Hash Table)

• Gia
– Topology adaptation
– Flow Control
– One-hop Replication
– Search Protocol
– Evaluation

• Structural Gnutella
– Overhead of maintaining structured/unstructured overlay
– Overhead of queries in structured/unstructured overlay

• Conclusions
14

Pastry/DHT

• peers distributed on Ring structure

• peers id computed with hash function of IP

• successor: next peer in id space

• predecessor: last peer in id space

• files matched to nodes with hash function

Chord:

• id space of 2b, e.g. b=128

• additional pointer to all peers with address id+2i,
i=0..b-1

15

Pastry/DHT
b =4
id =0..15

pred
succ

0

12

11

9

5

3

2

2

+1

+2+4

+8

+1

+2

+4

+8 3

6

6

10
10

13

13

8

8

8

8

7

7

7
16

Pastry:
• Routing table:

• Joining of node n:
– join over node s
– copy of s routing table
– copy of i-th row of node n to message to nodes in row i

• Leaving: failure detection, copy value of neighbour

Pastry/DHT

10310 103301032010300

R3
10100 103001020010000

R2

11000 130001200010000

R1

e.g. id=10322

10000 300002000000000
R0

17

Pastry/DHT

Problem of DHT:

• failure causes loss of items and disconnection in
ring

-> each peer keeps list of log2(N) next nodes

->files replicated in successors

• not designed for heterogeneous network

->files distribution independent of capacity

• designed for exact word queries

18

Overview
• Systems

– Gnutella 0.4
– Gnutella 0.6
– Pastry/DHT (Distributed Hash Table)

• Gia
– Topology adaptation
– Flow Control
– One-hop Replication
– Search Protocol
– Evaluation

• Structural Gnutella
– Overhead of maintaining structured/unstructured overlay
– Overhead of queries in structured/unstructured overlay

• Conclusions

4

19

Gia Design

Design:

• dynamic topology adaptation:
Most nodes within short range of high capacity node

• active flow control
avoid overloaded hot-spots

• one-hop replication
all nodes maintain pointers to content of neighbours

• search protocol
biased random walks directed to high-capacity nodes

20

Gia – Topology Adaptation

Topology adaptation

• High capacity <-> high degree (~supernodes)
– level of satisfaction:

Minimum/maximum number of connections

prefer neighbours with higher capacity and lower degree

drop neighbours with highest degree

21

Gia – Topology Adaptation

22

Gia - Flow control

Flow Control

• peers periodically assign tokens to neighbours
– queries only forwarded if token received

-> overloaded nodes stop receiving queries

– token proportionally to capacity

-> more capacity, more queries can be sent

-> more queries from nodes with high capacity

- peers not using tokens are marked as inactive
-> get less tokens

23

Gia – One-hop Replication

One-hop Replication

• peers keep index of files at neighbours
-> response to queries includes files at neighbour

• peers keep copy of files at neighbours
-> paper tried to improve network structure and network

querying. Copy of file would improve availability

Query: smooth criminal?

Smooth criminal!

?
?

?
?

?

?

With One-hop Replication.

Smooth criminal!

Query: smooth criminal??
?

24

Gia Search Protocol

Search Protocol

• Random walk instead of flooding

• Query forwarded to neighbour with highest
capacity

• Book-keeping of queries to avoid redundant paths
– node remembers paths used

– query only forwarded if MAX_RESPONSES not reached

– addresses of nodes already mentioned in Query Hit
attached to query

5

25

Evaluation Gia

Reference Systems:

• FLOOD: search flooding network

• RWRT: Random Walk over Random Topology

• SUPER: nodes classified as normal or supernode

26

Evaluation Gia

Gia

Super

Flood
RWRT

27

Evaluation Gia

Gia
Super

Flood

RWRT

28

Evaluation Gia

• RWRT better than FLOOD, specially high replication
factor

• Extremely low hop-counts at higher replication rate

• Performance of FLOOD decreases with system size

29

Evaluation Gia

How to handle churn

• Failure in network may lead to loss of query
– Keep-alive messages
– query reissued if no keep alive-messages received

– to avoid loss of queries do to adaptation, paths are kept
for a while, to reroute queryHits

30

Gia Network is unstructured

Why not DHTS/keep network unstructured?

1. P2P clients are extremely transient (ø 60 min.)

2. Keyword search more often than exact-match

3. Designed to improve query performance, but most
queries are for hay not needle

4. DHT maps files to users (not a user decision)

5. Don‘t support complex queries

6. Don‘t cope with churn (high overhead for leaving)

6

31

Overview
• Systems

– Gnutella 0.4
– Gnutella 0.6
– Pastry/DHT (Distributed Hash Table)

• Gia
– Topology adaptation
– Flow Control
– One-hop Replication
– Search Protocol
– Evaluation

• Structural Gnutella
– Overhead of maintaining structured/unstructured overlay
– Overhead of queries in structured/unstructured overlay

• Conclusions
32

Structured overlay

Gnutella 0.4 improved with Pastry network
structure

• up to 32 peers in network table
• Boostrapping like in Pastry
• I‘m alive for failure
Results
• Pastry maintains more neighbours
• overhead between 0.4(4) and 0.4(8)
• overhead grows with network size, but slowly
• overhead negligible for all systems

33

Structella - Maintenance

34

Structured overlay

Gnutella 0.6 improved with Pastry network
structure

• supernodes implemented in network
– supernodes organized in pastry network

– normal nodes attached randomly to supernodes

Gia improved with Pastry network structure

• Builds network with pastry structure based on gia
neighbour selection principles (satisfaction)

35

Superpasty - Maintenance

36

HeteroPastry -Maintenance

7

37

Overview
• Systems

– Gnutella 0.4
– Gnutella 0.6
– Pastry/DHT (Distributed Hash Table)

• Gia
– Topology adaptation
– Flow Control
– One-hop Replication
– Search Protocol
– Evaluation

• Structural Gnutella
– Overhead of maintaining structured/unstructured overlay
– Overhead of queries in structured/unstructured overlay

• Conclusions
38

Structured overlay

Results presented only considered overhead for
maintain structure.

Explore advantages of structured overlays using
querying advantages of Gia network

• structure helps avoiding that queries visit nodes
several times

• route queries to nodes with higher capacity

39

Pastry – Query overhead

40

Pastry – Success rate

41

Structured overlay

42

HP/SP - success rate

8

43

HP/SP – Query delay

44

HP/SP – Query overhead

45

Conclusions
• Most work experimental

– Gia introduces several techniques that help efficiency
• Problems to deal:

– High rate of churn
– High heterogeneity of nodes in bandwidth, query rate,

CPU, RAM, availability
– different configurations lead to different solutions

• Structures
– not a solution, but may help improve efficiency

• Implementation for results on real network:
– legal issues
– highly distributed system
– no control of single peers in real environment

46

Sources
• Original Gnutella 0.4 specification:

http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf

• RFC-Gnutella 0.6
http://rfc-gnutella.sourceforge.net/developer/testing/index.html

• Pastry/DHT
Jie Wu; Handbook on Theoretical and Algorithmic Aspects of
Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks, Chapter 39

• Papers:
– Making Gnutella-like P2P Systems Scalable.

Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker

– Peer-to-Peer Overlays: Structured, Unstructured, or Both?

Miguel Castro, Manuel Costa and Antony Rowstron

– Should We Build Gnutella on a Structured Overlay?

M. Castro, M. Costa, A. Rowstron

– Why Gnutella Can't Scale. No, Really.

Jordan Ritter

