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ABSTRACT
Coping with mobility and dynamism is one of the biggest
challenges in ad hoc networks. An essential requirement for
such networks is a service that can establish communication
sessions between mobile nodes whose location is unknown.
A location service for ad hoc networks is a distributed al-
gorithm that allows any source node s to know the location
of any destination node t, simply by knowing t’s network
identifier.

A location service has a locality aware lookup algorithm
if the cost of locating destination t from source s is propor-
tional to the cost of the minimal cost path between s and
t. A location service has a locality aware publish algorithm
if the cost of updating the location service due to a node
moving from x to y is proportional to the distance between
x and y.

In this paper we present LLS, the first location service
for the Unit Disk Graph model whose lookup and publish
algorithms have worst case locality guarantees and average
case locality awareness efficiency for any source destination
pair.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Distributed networks

General Terms
Algorithms, Theory.

Keywords
Location Service, Ad hoc networks.

1. INTRODUCTION
In the widely used geometric ad hoc Unit Disk Graph

model each node knows its location on the Euclidean plane
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and it can communicate with all other nodes whose distance
is at most one unit. Consider the following natural question
for mobile networks; A source node s wants to initiate a
communication session with a destination node t. The main
problem is that node s has no a priori knowledge of t’s cur-
rent location. Thus, the first step in establishing a connec-
tion is to locate t’s whereabouts. Once the location of the
destination is discovered the source can route messages and
establish communication using well known geometric rout-
ing algorithms. A location service for ad hoc networks is a
fundamental building block that allows any source s to know
the location of any destination t.

More generally, a geometric location service is useful in
any Euclidean metric space: one needs to find the coor-
dinates of targets in order to route toward them. Using
geometric coordinates in general networks is made relevant
not only by the ubiquity of GPS devices, but also by several
recent techniques that embed internet nodes in a coordinate
space. One of the pioneering mechanisms to predict network
latency is based on the work of Ng and Zhang [26]. They
embed the Internet latencies into a virtual geometric space
(e.g., 3-D Euclidean) and characterize the position of any
node with coordinates. The computed distances are used to
predict the actual network distances. Following [26] other
schemes have been developed to improve the embedding of
internet hosts into virtual geometric spaces, e.g., [12], [33],
[8], and [30]. Although the principles of LLS are applicable
for general Euclidean spaces, the remainder of this paper
focuses on describing LLS for ad hoc mobile networks.

In order to formally assess the utility of a geometric lo-
cation service, we define formal measures of efficiency. Let
the cost of a path be the sum of the costs of its edges. An
important measure of a location service is its lookup cost :
Given a source node s and destination node t, the cost of
locating t from s is the cost of the path induced by the loca-
tion service until the location of t known. A locality aware
lookup algorithm is an algorithm whose lookup cost is pro-
portional to the cost of routing between s and t when the
location of the destination is known.

For mobile networks, whenever a node changes its loca-
tion it must update the location service. Therefore, another
important measure of a location service is its publish cost :
Given that a node moves from location x to a new location
y, the publish cost is the total cost of the paths induced by
the publish algorithm. A locality aware publish algorithm is
one whose cost is proportional to the distance between the
old location x and the new location y.



1.1 Our Results
We present a Locality aware Location Service named LLS.

Our location service is the first location service which has
both worst case guarantees and average case efficiency. For
worst case networks our lookup incurs a lookup cost of O(d2)
for a source and a destination whose minimal cost path has
length d.

For networks in which the expected ad hoc routing costs ∆
times the distance from source to destination, LLS achieves
in addition an average case linear cost over the distance,
O(d). Thus, in average case networks of nodes randomly po-
sitioned in the plane, where the routing cost is proportional
to the distance from source to destination, lookup in LLS
costs only a constant factor more than the distance between
the source and the destination.

Our scheme is also the first to provide guaranteed average
case efficient publishing. That is, our service ensures that
the expected cost of updating the data structures due to a
node’s movement is bounded as a function of the distance of
the movement. Specifically, when a node moves distance d,
the average cost of publishing its new location is O(d log d).

The inherent locality of our scheme makes it fault toler-
ant both to node failure and to network partitions. When
the network partitions, nodes within a connected compo-
nent can locate each other because the location service is
also collocated with them within the component. As for
node failures, when some node containing location infor-
mation fails, there is sufficient redundancy at incrementally
increasing distances in the network to transparently make
up for it.

1.2 Related work
Geometric ad hoc routing. The first step in our approach,

is a routing algorithm for known geometric locations. The
first routing algorithm to guarantee delivery is [19] (Kranakis
et al.). Their face routing algorithm has no bound on the ra-
tio between the cost of route and the cost of the minimal cost
path. Both Bose et al. [6] (CGF) and Karp and Kung [17]
(GPSR) propose an algorithm that combines greedy rout-
ing with face routing. These algorithms guarantee delivery
and any source destination pair have expected cost O(d), for
average case networks, where d is the distance between the
source and the destination. The first algorithm that gives
worst case guarantees is by Kuhn et al. [21]. They present
a scheme in which, if the minimal cost path has cost d,
then delivery with cost O(d2) is guaranteed, which is asymp-
totically optimal. In a follow up paper [22], they combine
their bounded face routing with greedy routing to achieve a
scheme that is both worst case asymptotically optimal and
average case efficient. In our construction, we make use of
an underlying geometric routing protocol, and assume both
linear average case behavior and quadratic worst case.

Location algorithms. Location algorithms are measured
by their lookup and publish costs. The basic location ser-
vices studied by Camp et al. [7] either have an unbounded
publish cost that may require to flood the whole network
with updated location information (DLS, SLS) or have an
unbounded lookup cost that may require to flood the whole
network to find the destination (RLS). A standard technique
for name services in wireless cellular networks (e.g., ISA-4
[1], GSM MAP [24]) employs a home location register (HLR)
for each mobile host. A publish algorithm stores the where-
abouts of a node at its home location. The lookup first

routes to the home location, and from there to the current
destination of the node. However, even this simple approach
is challenging in a mobile ad hoc network, since there is no
fixed infrastructure and the location servers themselves are
dynamic.

One of the first approaches to address that in ad hoc net-
works, by Hubaux et al. [15], is to define the home of a node
as a geometric area, and have all nodes in that area store lo-
cation information. A similar solution for finding the home
location is suggested in the context of sensor networks in the
Geographic Hash Table (GHT) of [29]. In their approach,
a home location is defined as a virtual coordinate. They
enhance the underlying routing to reach the closest node to
the virtual point. A similar concept is employed in the Geo-
Quorums of [10], where geometric coordinates determine the
location of home servers. In GeoQuorums, these focal point
coordinates define geographic areas that must be inhibited
by at least one server at any time. The drawback of all
of the home-based approach is that the cost of the lookup
and of the publish may be arbitrarily high compared to the
optimal path between source and destination.

In order to provide for better scalability and alleviate the
problem of reaching specific location servers, several works
suggest to replicate home location servers using quorum sys-
tems for availability and load balancing. Among these, the
works of [28, 18, 13, 14] have no locality awareness. Other
quorum based location services addressed locality in a par-
tial way.

One of the early locality-aware location services that em-
ploys a hierarchy of partitions is provided for the general
problem of object location in graphs by Awerbuch and Pe-
leg [4]. Their solution does not make use of the geometric
structure of ad hoc mobile networks, nor address their high
dynamism. Consequently, their solution is not easily adapt-
able to dynamic mobile settings. In addition, their locality
factors are somewhat large (polylogarithmic).

The approach taken by several works, e.g., in [31, 25, 5,
32], for quorum construction makes use of the planar struc-
ture of ad hoc networks. It defines a write quorum for up-
dating location information of a node as a column of some
choice trajectory, and potential some choice thickness. Sim-
ilarly, a read quorum for querying location information is a
row (of a choice trajectory and thickness). Trajectories are
determined such that in average density networks, read and
write quorums are likely to intersect. This method has good
average case locality for lookup, but its publish cost is al-
ways the full diameter of the network, thus not proportional
to the size of the movement. In addition, there are extreme
cases in which read and write quorums might not intersect.

The position based multi-zone routing method of Amouris
et al. [2] stores location information about each node in geo-
metrically increasing discs, each disc referencing the smaller
disc that contains the node. When a node moves a distance
2i, it broadcasts an update about the change to an area of
radius 2i+1. Thus, both lookup and publish have locality
awareness. The drawback of the scheme is that within a 2i

zone, location update is flooded to all nodes. This implies
that each node in the network needs to maintain information
(albeit not accurate) about every other node.

One of the pioneering works on efficient and scalable loca-
tion services is by Li et al. in [23]. Similarly to the multi-zone
method of [2], GLS utilizes a hierarchy of exponentially de-
creasing sets of regions (GLS uses squares rather than discs)



that cover the plane. Every node belongs to only log M
squares (were M is the diameter of the network). Using
ingenious techniques drawn from the consistent hashing ap-
proach [16], every node has a designated hashed location
server within each square, thus distributing the load of lo-
cation services across the network. The path taken by a GLS
lookup operation is bounded inside the minimal square that
contains both the source and the destination.

Yet GLS does not achieve either of our goals, and sup-
ports neither worst case locality aware lookup, nor locality
aware publish. There are several reasons for that, none of
which is trivial to fix. First, their scheme makes little effort
to proactively handle updates and out of date information.
This problem arises when, for instance, a node crosses a
grid boundary line. This causes a change in the role the
node plays as a location server for others, performing this
change of roles may cause the publish cost to be arbitrar-
ily high compared to the distance taken. The authors state
that indeed a remaining open question is improving the han-
dling of node mobility. Second, there may be a source s and
destination t that are arbitrarily close to each other, but
the smallest square that contains both of them is arbitrar-
ily large. As a consequence, even in average case networks,
the cost of lookup does not have worst case bounds. Third,
within each square GLS routes to a location server in or-
der to find the target. In extreme network conditions when
the network is sparse, routing to the location server, even if
close by, could require worst case cost, while routing directly
to the destination could be efficient. Thus, the worst case
lookup cost could be arbitrarily high and have no worst case
locality guarantees. This degraded performance in sparse
networks was also observed by Guba and Camp [11].

A totally different approach focusing on worst case analy-
sis is discussed in the Conclusion section of [21]. The authors
describe an algorithm that we name the Iterative Bounded
Flooding (IBF) algorithm. This algorithm runs in phases
beginning with phase 1 and incrementing the phase by one
until the destination is found. At phase i, the algorithm
floods the network to all nodes whose minimal cost path
from the source is at most 2i. IBF is asymptotically worst
case optimal. Specifically, if the minimal cost of the path
from source to destination is d then IBF guarantees to reach
the destination in cost O(d2). The main drawback of this
approach is that its average cost is also Ω(d2).

Recently, in the context of sensor networks and a slightly
different model, Demirbas et al. [9], achieve O(d log d) move
time and O(d) find time.

1.3 Technical approach
For each destination node t, we define a virtual hierarchi-

cal cover of the M × M plane consisting of exponentially
decreasing squares, whose origin depends on the node’s id.
Our solution is built incrementally in three steps, Spiral,
Spiral-Flood, and LLS. In our basic Spiral algorithm, we
publish t’s location on a spiral that spans increasingly large
squares in the hierarchy, and likewise, search for t in increas-
ing spirals on the same virtual hierarchy. The lookup and
publishing paths are guaranteed to cross at the first hierar-
chy level in which the squares containing the source and the
destination intersect. This cover bears resemblance to the
hierarchical grid of GLS [23]. However, we address mobility
with techniques borrowed from GHT [29] by using virtual
coordinates within the squares for storing information on t

rather than search for certain pre-designated nodes. This
allows us to search in four grid squares around each point,
and circumvent grid-boundary problems. Unlike GLS, our
hierarchical cover forms a subsuming partition of the plane
that is similar in spirit to the work on sparse partitions of
Awerbuch and Peleg [3].

For most networks, this scheme suffices to have a lookup
that is within an expected constant factor over the most op-
timal route. In order to further address worst case scenario,
in our Spiral-Flood scheme we carefully interweave depth-
bounded flooding stages with spiral lookup stages. This only
increases the total cost by a constant factor, yet provides
worst case quadratic location guarantee.

Finally, the full LLS scheme addresses publishing in the
following way. First, we modify Spiral (or Spiral-Flood) so
that within each lattice in the hierarchy, we publish a node’s
location not only in the square containing it, but also in the
eight squares surrounding it. When a node moves within the
nine square boundary, nothing happens. The stale informa-
tion may eventually lead to a square that does not contain
the node, but then one of the surrounding squares does. Lo-
cation information in a lattice is updated only when the node
leaves the nine-square boundary, at which time the distance
traversed by the node (possibly over multiple steps) already
exceeds the diameter of one square. As a consequence, we
prove that the amortized cost of information updating due
to a cumulative movement of distance d is O(d log d).

In summary, our LLS scheme provides the first scheme
which has both locality aware lookup and locality aware
publish. Lookup is linear in average case networks, and is
quadratic in the worst case, and publish is sub-quadratic.

2. MODEL AND NOTATIONS
Consider a set of n nodes, V , that exists in the Euclidean

plane R2. Each node v has a unique name denoted v.id.
Denote by |uv| the L2 distance between the location of the
nodes u and v. The underlying network is formed by a Unit
Disk Graph UDG= 〈V, E〉 in which u, v ∈ V have an edge
(u, v) ∈ E iff |uv| ≤ 1.

We assume a nondecreasing cost function c, mapping edge
lengths to real numbers. Formally, c : [0, 1] 7→ R+, and
for all 0 ≤ x ≤ y ≤ 1 we have c(x) ≤ c(y). This cost
function abstraction generalizes the three common cost mea-
sures: hop count c(x) = 1, Euclidean distance c(x) = x, and
energy c(x) = xα for α ≥ 2. Given a path p = u1, u2, . . . , uk

such that (ui, ui+1) ∈ E define the cost of the path to be

c(p) =
Pk−1

i=1 c(|uiui+1|). Given two nodes u, v let d(u, v)
denote the cost of the minimal cost path in UDG from u to
v.

In order to be able to obtain worst case bounds on the
cost of geometric routing we assume Ω(1) density. In this
model there exists a minimum length d0 such that for any
network minu,v |uv| ≥ d0. Following the results in [20] it is
also possible to remove the Ω(1) density assumption if the
cost function, c, is linearly bounded. Formally c is linearly
bounded if there exists a constant m such that ∀x ∈ [0, 1] :
c(x) ≥ mx. For linearly bounded cost functions it is possible
to construct a connected dominating set backbone. Routing
can be done on this backbone, which, by its nature, has
bounded density. We note however that maintaining this
backbone in a dynamic network incurs additional costs.

We assume all nodes are located inside a bounded square
of size M × M . Without loss of generality we normalize



the coordinates so that all nodes, V, are inside the square
whose diagonal corners are (0, 0), (M, M). We further as-
sume that each node knows its own location in the plane
and its neighbors’ locations.

2.1 Virtual Coordinates
A recurring issue in our scheme is the use of virtual coordi-

nates that map to real nodes. The points are called virtual,
since there is no guarantee that there is a node exactly at
these points.

The natural way to map between nodes and virtual points
is to partition the plane using a Voronoi diagram (see [27]
for a survey on Voronoi diagrams and their applications).
This partition maps each point p in the square M × M to
the node closest to p. For a node x let A(x) be the Voronoi
polygon of x (the area of all the points to which x is the
closest node). For any point p ∈ R2 let `(p) be the closest
node to p, thus, p ∈ A(x) ⇔ `(p) = x .

Traditional geometric routing algorithms that combine
greedy with perimeter routing [17, 22] guarantee that given
the location of a node, the algorithm can route to it. These
algorithms can be augmented as in GHT [29] so that given
a virtual point p, the routing algorithm can reach the node
`(p) that is responsible for that virtual point. Their tech-
nique also adapts to node mobility. That is, when a node
moves, the lines between its Voronoi polygon and its neigh-
bors’ Voronoi polygons changes. The nodes communicate
and swap information about all the virtual points that cross
boundaries due to these line changes.

In summary, there is a mapping between virtual points
in the plane and the nodes responsible for them; and we
can employ routing to virtual points that reaches the cor-
responding nodes. Hence, by a slight abuse of terminology,
given a point p, we refer from here on to the node `(p) simply
as the node at p, or even the node p. And to the contrary,
given a node s we refer to the location of s as the point s.

3. PROBLEM DEFINITION
We consider algorithms for the geometric location prob-

lem. In this problem there are two basic operations: Publish
and Lookup. The Publish(t.id; x, y) operation is called every
time a node t changes its location from x to a new location
y. It is also used in the first time a node joins the system, by
executing Publish(t.id;⊥, y). The Lookup(t.id, s) operation
is called by a source node s in order to find location infor-
mation on a destination node t whose location is unknown.

We now define the complexity measure associated with
locality aware location services. The first time a node joins,
we would like to minimize the cost of its publish operation.
For subsequent publish operations we would like the cost of
publishing to be proportional to the distance taken. This is
formally captured in the following definition.

Definition 3.1. For a function f , a publish algorithm is
f -locality aware if for any node t with location x that moves
to a new location y the expected cost of Publish(t.id; x, y) is
at most f(|xy|).

If the destination node does not exist we would like to
minimize the cost of lookup until a failure result is returned
to the source. Otherwise, we would like to have a locality
aware lookup whose cost is proportional to the minimal cost
path as defined below.

Definition 3.2. For a function g, a lookup algorithm is
g-locality aware if for any source s, and destination t, such
that the minimal cost path costs d = d(s, t), the cost of
Lookup(t.id, s) from source s to destination t is at most g(d).

Note that Definition 3.2 is a worst case bound that com-
pares the lookup cost to the minimal cost path. Although
it may not be possible for all networks, we would also like
to get an average case bound on the cost of the lookup as
a function of the distance between source and destination.
The following definition captures this notion.

Definition 3.3. For a function g, a lookup algorithm is
g-average case efficient if for any source s, and destination
t, the expected cost of Lookup(t.id, s) from source s to des-
tination t is at most g(|st|).

Certainly, building a lookup service with minimal cost can
be done simply by storing complete location information at
each node about all other nodes. The cost of an update,
such as a node joining or moving, would be very high in this
case. The goal is therefore to build a location service that
simultaneously has the following properties: (1) a locality
aware publish algorithm; (2) a locality aware lookup algo-
rithm; (3) an average case efficient lookup on a large class
of networks.

It is known from the lower bounds of [21] that even if t’s
location is known, routing on UDGs may cost Ω(d2), where
d is the cost of the minimal cost path. Simulations in [22]
show that the cost of routing from source s to destination t
is expected to be O(d(s, t)), which is also O(|st|) for average
case networks.

Our goal is to match these bounds for location services.
Worst case lookup should cost O(d2), but for average case
networks we aim to preform lookup with average cost that
is only a constant factor more than the distance between the
source and the destination, O(d) = O(|st|). In case a node
moves from location x to destination y we strive that the
expected cost of the publish algorithm be a function of |xy|.

4. LLS ARCHITECTURE
We present our location service in a modular way. We

decompose the scheme into three algorithms, each algorithm
builds upon its predecessor’s techniques and enhances it:

1. Spiral algorithm. This location service obtains a local-
ity aware lookup algorithm for average case networks.

2. Spiral-Flood algorithm. This location service enhances
the Spiral algorithm by obtaining locality awareness
both for average case lookup, and for lookup in worst
case networks.

3. LLS. This algorithm enhances the Spiral-Flood service
with a locality aware publish algorithm.

4.1 Mapping to Hierarchical Lattices
In our construction, for each node identifier, we build a

hierarchy of lattices associated with the node’s identifier.
The node’s location is published on each lattice to the points
closest to its location, and is looked up on lattice points
closest to the location of the searching node.

Given a node t, we use a double index hash function
H(t.id) = 〈h1(t.id), h2(t.id)〉 that maps node identifiers to
coordinates inside M ×M . We denote H(t.id) the primary
virtual home of node t. Formally, H : V 7→ [0, M ]× [0, M ].
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Figure 1: Example of the lattice Lk(t.id) and of
Wk(t.id, x) = {w1, w2, w3, w4}

For a node t, and a parameter k ∈ {0, 1, . . . log M} we
define Lk(t.id) to be the lattice consisting of all lattice points
(h1(t.id) + 2ki, h2(t.id) + 2kj) ∈ M × M , for all i, j ∈ Z.
Alternatively, Lk(t.id) can be thought of as the set of corner
points of the tiling with squares of size 2k×2k having H(t.id)
as its origin.

For any point x and tiling of size 2k originating at the
virtual home of t, H(t.id), we define the level-k location
points of t from x, Wk(t.id, x), to be the set of the 4 corner
points of the tile that covers x. Formally, for k ≥ 1 we define
Wk(t.id, x) = {w1, w2, w3, w4} for every point x and lattice
Lk(t.id), to be the set of the 4 lattice points that are closest
to x in the L∞ norm (with ties broken lexicographically), see
Figure 1 for an example. When clear from the context, we
will abuse notation and use Wk(t.id, x) to denote the nodes
that are responsible for the virtual points.

5. THE SPIRAL ALGORITHM
We begin by presenting the basic spiral algorithm. It

achieves a locality aware lookup algorithm that performs
as well as the underlying geometric routing algorithm. In-
tuitively, a node publishes its location information in a set of
virtual points that form a virtual spiral that exponentially
increases in distance. When a node initiates a lookup oper-
ation, it too performs a spiral like search path. The lookup
finds the destination’s location when the two spirals inter-
sect. These two spirals intersect because the points in both
spirals are computed relative to the same hierarchical grid
whose origin is the primary virtual home of the destination.

The first time a node t joins the network at location y, it
invokes Publish(t.id;⊥, y) to register its location. When-
ever it moves from x to y in updates its location using
Publish(t.id; x, y). When a node s wants to establish com-
munication with node t, it issues Lookup(t.id, s).

Publish: A node t that moves from location x to y per-
forms Publish(t.id; x, y). This operation deletes the old lo-
cation information (if there was any) and registers the new
location y of the node by inserting location information in
O(log M) different virtual points.

Registering location information is done by storing lo-
cation pointers in the auxiliary memory of the nodes in
Wi(t.id, y). Each location pointer contains two fields: the
identifier of the destination and its location, in the form
〈t, y〉. Figure 2 depicts an example of the set of points to
which information is published.

Deleting the information of the old location x is done by
visiting the respective nodes responsible for the old virtual
points and deleting the information in them.

Figure 2: The corners of all the tiles that cover the
node are the set of virtual points to which location
pointers are published. The spiral depicts a path
that the Publish algorithm executes in order to reach
the virtual points.

Lookup: A node s that executes Lookup(t.id, s) reaches
the destination node t by querying location information at
the points associated with destination t, with increasingly
larger distances from s. This process is very similar to the
Publish operation. Once a location pointer is found, the
information in the pointer is used to reach the destination.

5.1 Analysis
The lookup operation of the Spiral Algorithm is only as

efficient as the underlying geometric routing that is used
for routing to the nodes that are responsible for the virtual
points. In this subsection we show that given a network with
an efficient routing layer, the lookup operation costs only a
constant factor more than the distance from the source to
the destination.

In order to analyze the cost of the lookup operation in
the Spiral Algorithm we first define the locality awareness
of geometric ad hoc routing schemes in which the location
of the destination is known.

Definition 5.1. A routing protocol is ∆-locality aware
if given a source s and point y ∈ R2, the expected cost of
routing from s to the node at y (more precisely, recall that
this should actually reach `(y), which is the node closest to y)
is at most ∆|sy|. Formally, let r(s, y) be the cost of routing
from s to y given that s knows the approximate location y

then, Es∈V,y∈R2

h
r(s,y)
|sy|

i
≤ ∆.

In Section 10 we present simulation results showing that
Greedy Face Routing is 2-locality aware for average case
networks where nodes are uniformly distributed.

The following lemma shows that there is a location pointer
at a distance that is proportional to the distance between
source and target.

Lemma 5.2. Let k̂ be the minimal index such that |st| =
d ≤ 2k̂ then at least one of the nodes in Wk̂(t.id, s) contains
a location pointer to node t.

Proof. Denote t’s location by y. Since destination node
t performed Publish(t.id; y) then the nodes in Wk̂(t.id, y)
contain location pointers towards t. Let Q1 be the square

of size 2k̂ × 2k̂ that covers t whose corners are Wk̂(t.id, y).
Let Q2, . . . , Q9 be the set of 8 adjacent squares of same size
that have a joint edge or joint corner with Q1.

Recall that we chose k̂ such that |st| = d ≤ 2k̂ therefore
s must be inside one of the squares Q1, . . . , Q9. Thus when



source s performs the k̂th phase of its lookup algorithm it
will find a location pointer towards t.

Note that a similar argument holds for the degenerate case
in which t lies exactly on a lattice line or intersection.

Hence for networks that have efficient routing, the cost of
lookup is a linear function of the distance between source
and destination.

Theorem 5.3. For networks in which routing is ∆-locality
aware, for any source s and destination t the expected cost
of locating t is O(|st|)

Proof. Due to Lemma 5.2, the lookup algorithm will
find a location pointer at phase k̂, where k̂ is the minimal

index such that |st| = d ≤ 2k̂. The expected cost of routing
to all the points W1(t.id, s), . . . , Wk̂(t.id, s) can be bounded

by the following expression:
P

i≤k̂ 2 · 4 · 2i · ∆ = O(2k̂) =

O(|st|) where the factor 2 is due to going to each of the
virtual points and returning to s, 4 is due to the fact that
there are 4 virtual points, 2i is due to the maximal distance
of the virtual points from s, and ∆ is the overhead due to the
underlying routing layer. Once a location pointer of level k̂
is found, the expected cost of following the location pointers
until t is found can be similarly bounded by O(|st|).

6. THE SPIRAL-FLOOD ALGORITHM
The main drawback of the basic spiral algorithm is that

it relies solely on the underlying routing algorithm for per-
formance. In particular, there may exist extreme situations
in which there is a low cost path from source to destination,
but the cost of the minimal cost path from the source to the
first virtual point is arbitrarily high.

The Spiral-Flood algorithm overcomes such cases. The al-
gorithm combines the iterated bounded flooding (IBF) ideas
from [21] for worst case bounding, with the average case ef-
ficiency of the Spiral algorithm.

In order to describe Spiral-Flood, we need to enumerate
in a sequence the nodes visited in the Spiral algorithm. For
a destination t and a source s, the Spiral lookup operation
Lookup(t.id, s), coupled with the underlying geometric rout-
ing mechanism determine the sequence of nodes that are
visited. We denote this sequence by Spiral(t.id, s). Define
Spiralj(t.id, s) to be the prefix path of Spiral(t.id, s) con-
taining the first j nodes.

The Spiral-Flood lookup consists of phases, i = 1 . . . log M.
When the accumulated cost of the Spiral lookup reaches 4i,
we switch to flooding of depth 2i. This ensures that the cost
of the combined algorithm is not more than a constant fac-
tor over the basic Spiral algorithm, and at the same time
the cost does not exceed the worse case cost of the flooding
algorithm. The pseudo code for the Spiral-Flood algorithm
appears in Figure 3. The Publish algorithm is the same as
the in basic Spiral algorithm.

6.1 Analysis
In this subsection we prove that the Spiral Flood algo-

rithm worst case quadratic cost.

Lemma 6.1. Spiral-Flood locates any destination t from
any source s with cost O(d(s, t)2).

Proof. Denote d = d(s, t), let j be the minimal index
such that d ≤ 2j . Clearly before the end of phase j of the

Lookup(t.id, s)
Initialize phase := 0
Until a location pointer for t is found:

1. Spiral stage: Route on the path Spiral(t.id, s)
for j hops, as long as the cumulative cost
c(Spiralj) is less than 4phase.

2. Return back to the source node s.
3. Flooding stage: Flood a search message to all

nodes r whose minimal cost path d(s, r) is at
most 2phase.

4. Converge the search results back to source node
s.

5. Set phase := phase + 1.

Figure 3: The Spiral-Flood Lookup Algorithm.
Node s wants to establish a communication session
with node t.

Spiral-Flood algorithm the destination will be found. This
is true since the jth flooding phase would reach all nodes
whose cost is a most 2j .

Given the Ω(1) assumption of a minimal distance between
nodes (or any other bounded density assumption due to a
CDS backbone), the sphere of nodes whose cost is at most
2j has O(22j) nodes and hence also O(22j) edges. Each such
edge is traversed at most 4 times. Therefore, the cost of a
flooding during phase j is O(22j).

By construction, the cost of the bounded phase-j walk on
Spiral(t.id, s) is O(4i). Therefore, the total cost until the
end of phase j is

P
0≤i≤j O(4i)+(22i) = O(4j) = O(d2).

Compared with the basic Spiral Algorithm, the Spiral
Flood Algorithm incurs a constant factor overhead.

Lemma 6.2. The cost of reaching the points W1(t.id, s)
through Wi(t.id, s) in the Spiral Flood Algorithm is at most
a constant factor more than the cost of the basic Spiral Al-
gorithm to reach the same set of points.

The proof follows by noting that in each stage of the algo-
rithm, the cost of the flooding stage is at most a constat
factor more than the cost of the spiral search stage for that
phase.

7. THE LLS ALGORITHM
In this section we describe our full scheme, LLS, in which

proactive updating of location information due to node move-
ments is proportional to the distance of the move. Formally
we present a publish algorithm that is average case efficient.
Achieving this aim is somewhat more involved than simply
writing to all the virtual points in Spiral(t.id, y) and delet-
ing the points in Spiral(t.id, x).

First, instead of publishing to only 4 virtual points at each
level, our publish algorithm publishes to 16 virtual points.
For any point x and tiling of size 2k originating at the virtual
home of t, H(t.id), we define Zk(t.id, x) to be the set of
corner points of the 9 tiles of size 2k×2k that form a square
3 · 2k × 3 · 2k whose center tile covers x. Formally we define
Zk(t.id, x) = {w1, . . . , w16} for every point x and lattice
Lk(t.id), to be the set of the 16 lattice points that are closest
to x in the L∞ norm (with ties broken lexicographically).
See Figure 4 for an example.

Secondly, in order to reduce costs, a node does not up-
date its level k location pointers as long as it does not move
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Figure 4: Example of the lattice Lk(t.id) and of
Zk(t.id, x) = {w1, . . . , w16}

a total of a certain distance proportional to 2k−1. This lazy
update process is carefully done in a manner that still allows
the lookup algorithm to be efficient and locality aware. Ac-
cordingly, we modify the location information stored at the
publish nodes Zk(t.id, y) as follows. At the location nodes
of Zi(t.id, y), we store information on a set of virtual points
that defines the next hop towards the destination, in the
form 〈t, Wi−1(t.id, y)〉. At Z0(t.id, y), we store the location
y itself.

Publish: A node t that moves from location x to y per-
forms Publish(t.id; x, y).

1. If W0(t.id, x) = W0(t.id, y) then no update is required.
2. Otherwise, do a spiral search, find the minimal index

i such that all four points of Wi(t.id, y), have location
information regarding t.

(a) If i = 0 then no update is required. Otherwise,
when i > 0:

i. Using the location information stored in Wi(t.id, x)
(which contains Zi−1(t.id, x)), recursively erase
all the location information in the 16 points
of each level i− 1, . . . , 0.

ii. For j = 1, . . . , i − 1, store in Zj(t.id, y) the
location pointer 〈t, Wj−1(t.id, y)〉.

iii. Set the location pointers of level i to point to
the new location 〈t, Wi−1(t.id, y)〉.

Note that the minimality of the index i implies that if
i > 0 then the node should have moved out of the 9 tiles of
level i− 1. Thus, the node has moved a distance of at least
2i−1 since the last time the related nodes were updated. See
Figure 5 for the LLS Publish algorithm.

Lookup: Node s executing Lookup(t.id, s) starts the lookup
algorithm as before (Spiral or Spiral Flood). However, the
search ends when a recursive location pointer is found of the
form 〈t, W (t.id, y)〉, where y is the location of t.

Once such a node is found, repetitively use location point-
ers in order to route from a point in Wj(t.id, y) to a point
in Wj−1(t.id, y) and eventually for j = 1, to destination t.

At the lowest level, if the destination is not found at the
square of the lowest level (of size 1 × 1), then a search is
conducted in the 8 unit squares surrounding that square.

7.1 Analysis
To address the complexity of the LLS publish algorithm

we carefully study the movement of the node. Assume that
the node performed h publish operations, the location his-
tory of the node is the sequence x0, x1, . . . , xh of locations.

Publish(t.id; x, y)

1. If all nodes W0(t.id, y) contain a location pointer
for t then RETURN. Otherwise initialize i := 1

2. STEP A: Read all nodes in Wi(t.id, y)
3. If all nodes Wi(t.id, y) contain a location pointer

for t goto STEP B.
4. Write in all 16 nodes of Zi(t.id, y) a location

pointer 〈t, Wi−1(t.id, y)〉.
5. Set i := i + 1 and goto STEP A.
6. STEP B: Update the content of the 16 ex-

isting level i location pointers to point to
〈t, Wi−1(t.id, y)〉.

7. For j = i to 0 do

Read all level j nodes. Using the location point-
ers in the level j nodes, route to all the level j−1
nodes and delete their location pointers.

Figure 5: The LLS Publish Algorithm. Node t updates

location pointers once it arrived to a new location y.

In order to bound the total cost of its h publish operations
we will keep track of the relative location of the intermedi-
ate nodes. We prove the bound on the cost in an amortized
sense. The reason is that the node does not need to update
its location pointers as long as it does not cross its 16-point
boundary, which happens only if it moves a total of a certain
distance. Once the node publishes its location, the cost of
publishing is offset by the total distance it has covered since
its last update.

Our analysis focuses on average case networks, and in par-
ticular, assumes that the network has ∆-locality aware rout-
ing, Let d(Xj) denote the total distance moved by the node

in its first j ≤ h hops, thus d(Xj) =
Pj−1

i=1 |xixi+1|. For any
level k, let ck(xj , xj+1) denote the cost associated with writ-
ing and deleting location pointers on level k virtual points
as a result of Publish(t.id; xj , xj+1). Denote the cost of up-
dating the level k virtual points due to the first j location
changes as ck(Xj) =

Pj−1
i=1 ck(xi, xi+1). Our goal is to bound

the total cost c(Xj) =
Plog M

i=1 ci(Xj) as a function of total
distance d(Xj).

Lemma 7.1. If Publish(t.id; xj , xj+1) changes level k lo-
cation pointers then the expected cost of this change is bounded
by E [ck(xj , xj+1)] ≤ ∆ · 2k+6.

Proof. When the Publish(t.id; xj , xj+1) changes level k
location pointers, it deletes old level k pointers and writes
to its new ones. The expected cost of each of these two
operations can be bounded by ∆ · 2 · 16 · 2k .

Where the factor 2 · 16 · 2k is due to the total distance of
a spiral path visiting all 16 points and returning and ∆ is
the overhead due to the underlying routing layer.

When level k location pointers are not changed despite
the move, there is a potential gain towards future updates.
This is formally stated in the following Theorem.

Theorem 7.2. The total expected cost of publishing of lo-
cation history x1, . . . , xh, is bounded by E[c(Xh)] ≤ O(d log d )
where d = d(Xh).

Proof. While moving, the node occasionally updates its
location pointers. Consider a specific level k. A node mov-
ing from xj−1 to xj updates its level k pointers when the
location of its level k − 1 pointers at xj−1 differ from its



new location’s (xj) level k − 1 pointers. Formally, let i1 <
i2 < · · · < im be the sequence of all indices such the level
k location pointers were updated when the node reached
xi` for 1 ≤ ` ≤ m. Due to our publish algorithm, the
distance the node moves between any two updates of level
k pointers is at least 2k−1. That is, for any such index i`
we have

P
i`−1<j≤i`

|xj−1xj | = d(Xi`) − d(Xi`−1) ≥ 2k−1.

Thus the number of updates m is bounded by d(Xh)/2k−1.
From Lemma 7.1, the expected cost of the update of level
k pointers is ∆ · 2k+6. Therefore, by summing on the whole
sequence, E[ck(Xh)] ≤ ∆ · 2k+6m ≤ ∆ · 27 · d(Xh). The ex-
pected total cost of publishing the updates during the loca-
tion history x1, . . . , xh, is the sum of the costs over all levels
that were updated during the total move. Thus, the cost is
E[c(Xh)] ≤ ∆27 · d(Xh) log d(Xh). If d(Xh) ≥ M then the
expected cost may be bounded by ∆27 · d(Xh) log M .

8. FAULT TOLERANCE
Our location service is inherently fault tolerant both to

network partitions and to node failures.
In case of a network partition, nodes within the vicinity of

a detached node remain able to locate it and communicate
with it. More precisely, let a set of nodes S detach from
V \ S. For a node t ∈ S, let k be the maximal index such
that Wk(t.id, t) ⊆ S. Then all of the nodes within distance
2k can locate t and communicate with it. In fact, even in
extreme cases where a partition forms weird shapes, for any
` > k such that we have W`(t.id, t) ∩ S 6= ∅, far nodes in
S that have lookup spirals intersecting these location points
are also able to locate t.

As for node failures, our scheme provides immediate fall-
back due to the multiplicity of location points that store
information about any node. In particular, when a node s
searching for t.id encounters a faulty location point, it sim-
ply skips it and moves on to the next higher level. This guar-
antees location at the first non-faulty level that is greater
than the distance from the source and the target. That
this works follows from the following fact. If the minimal
index at which intersection occurs between Wk(t.id, t) and
Wk(t.id, s) is k, then higher level location points intersect
as well.

As a final frontier for fault tolerance, the flooding stage
will always locate the target (if it is connected) at a quadratic
cost.

Additional fault tolerance is provided by employing the
perimeter replication techniques of [29], by storing all of
the information belonging to virtual point x also on all the
nodes surrounding its perimeter.

9. IMPROVING LOCALITY AWARENESS
Assume a network in which routing is ∆-locality aware.

A natural question to ask is whether on top of the locality-
aware routing mechanism, our Spiral paradigm can provide
location services with costs arbitrarily close to minimal. In
addition to its theoretical value, this question has real-life
motivation: For nodes that incur frequent lookups, we would
like to drive the lookup cost down as much as possible.

In this section, we focus on optimizing the cost of the
lookup operation. We obtain a lookup scheme whose cost
is (1 + ε)∆ on top of the actual distance to target. The
decreased lookup cost is obtained at the cost of increasing
the publish cost by a constant factor. We could do the

reverse in a similar manner, if the frequency of updates is
expected to exceed that of lookups.

In order to reduce the cost of lookup, denote by B(u, r) the
ball around node u with radius r. Let us define Wk,`(t.id, x)
to be Lk(t.id) ∩ B(x, 2`); that is, the set of lattice points
in Lk(t.id) within distance 2` from x. The trick will be to
slightly increase the range of publishing into Wk,k+ρ, for a
parameter ρ of the construction determined below; and to
query only one node in Wk,k. More precisely, we now define
publish and lookup as follows:

Publish: For any i ∈ {0, 1, 2, . . . , log M}, location point-
ers on t.id located at y are stored in the auxiliary memory
of the nodes in Wi,i+ρ(t.id, y), where the parameter ρ is de-
termined below. A node t that moves from location x to y
performs Publish(t.id; x, y) by deleting old information and
storing new information in the nodes described above.

Lookup: A node s executes Lookup(t.id, s) by performing
the following loop. Until t is found, for i = 0, 1, 2, . . . , log M ,
read from the closest node in Wi,i(t.id, s) until a node is
found that has a location pointer 〈t, W (t.id, y)〉, where y is
the location of t. Once such a node is found, repetitively
use the location pointers in order to route from a point in
Wj(t.id, y) to a point in Wj−1(t.id, y) and eventually for
j = 1, to destination t.

Locality awareness stems from the following lemma:

Lemma 9.1. Denote |st| = d. Let k̂ be the minimal index

such that 2k̂ + d ≤ 2k̂+ρ. Then the k̂’th lookup step from s
finds a location pointer to node t.

Proof. The lemma follows from the fact that B(s, 2k̂) ⊆
B(t, 2k̂+ρ). Hence, every node in Wk̂,k̂(t.id, s) is contained in

Wk̂,k̂+ρ(t.id, t). Therefore, every node in Wk̂,k̂(t.id, s) holds
a location pointer to node t.

As a consequence of this lemma, the cost of lookup from s

to t is bounded by
P

i≤k̂ 2i∆ ≤ 2·2k̂∆. Bearing in mind that

k̂ was the first index for which 2k̂ +d ≤ 2k̂+ρ, we now simply
need to set ρ = ρ(ε) to be ρ ≥ log(1 + 8∆

ε
) = O(log(ε−1)),

in order to obtain that the total lookup length is at most
(1 + ε)∆d.

We now get to the increased cost of publishing. We only
sketch the difference here due to space limitations. In our
original Spiral method, publishing a node’s new location was
done in the 4 corner points of the tile covering the node. We
now change that to include all the lattice-k points within
distance 2k+ρ from the node. Their count is at most 22ρ, and
the total cost of reaching them is proportional to 2k+ρ/2k.
Therefore, the increased cost is a constant factor over our
original scheme, where the constant depends on ρ = ρ(ε).

We also briefly comment on how to complete our scheme
for locality-aware updates. This requires maintaining an in-
variant that all lattice-k points within a ball of radius 2k+ρ

surrounding a node have up-to-date information about the
interior ball containing it. In order to prevent frequent up-
dates, we initially publish within a ball with double this ra-
dius, i.e., a ball of radius 2k+1+ρ, and update only when the
invariant is broken. This again incurs only a constant-factor
increase over the original LLS publish costs.

In summary, at the cost of a constant factor increase in up-
date costs, we obtain a location service whose cost is almost
as low as the cost of the underlying routing infrastructure.



10. SIMULATIONS
In this section we present simulation results for the LLS

scheme. Following the observations of [22] about the im-
portance of the network density on routing performance, we
tested our scheme in randomly generated graphs with vary-
ing densities. The density of a graph is defined relative to
a unit disk as follows, a random graph on a T × T square
with density δ has δT 2/π nodes.

We tested the underlying Greedy Face Routing algorithm
to virtual points, and the LLS Lookup algorithm. Our mea-
surements were performed on Unit Disk Graphs that were
generated by randomly placing nodes on a square with 15
units side length.

Routing. For the underlying greedy face routing algo-
rithm, for each density δ, we generated 1200 random graphs
for δ ≤ 8 and 200 random graphs for δ > 8, for each graph,
we randomly chose 50 sources nodes, for each source s we
chose a random point p on the square and found the closest
node `(p) to the virtual point p. We measured the following
parameters for each density:

1. Connectivity: The percentage of node pairs s, `(p) that
were connected on the Unit Disk Graph.

2. Cost/Distance: The average ratio between the cost of
routing from a source s to a destination `(p) and the
Euclidean distance between s and p.
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Figure 6: Connectivity percentage and
Cost/Distance values for greedy face routing
from a random source to the node closest to a
random point.

Our results in Figure 6 show that the average cost of rout-
ing on a random graph to the node closest to a virtual point
is only a small constant factor times the Euclidean distance
between the node and the virtual point.

Lookup. For each density value δ, we generated 500 ran-
dom graphs for δ ≤ 10 and 100 random graphs for δ > 10,
for each graph, we randomly chose 10 sources nodes, for each
source we randomly chose a destination node. We measured
the following 4 parameters for each density:

1. Cost/Distance: The average ratio between lookup cost
and Euclidean distance between source s and target t.

2. Cost/Shortest path: The average ratio between lookup
cost and the minimum cost path from s to t on the
UDG.

3. Connectivity: The percentage of s, t pairs that were
connected.

4. Flood: the percentage of cases in which the lookup
algorithm had to use flooding in order to find the des-
tination.
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Figure 7: Measurements for Lookup algorithm:
Cost/Distance and Cost/Shotest path values, Con-
nectivity and Flood percentages.

Our results in Figure 7 show that lookup is locality aware,
the average cost of locating a mobile node is only a constant
factor from the optimum. For low densities, the low stretch
factor may be attributed to the fact that the connected com-
ponents are relatively small. Both Cost/Distance, Cost/Shortest,
and Flood ratio peak around density 5. In this critical den-
sity, the graph is mostly connected but finding short paths
to route on is still hard.

Publish. We measured the cost updating the location
pointers due to a random hop. The distance moved in each
hop was a varied by a parameter `. For each hop length `,
we generated 100 graphs, for each graph we chose 20 sources
and for each source we performed a random hop, with a
randomly chosen angle and a randomly chosen length in
[`, ` + 1/2). For every value of `, we measured the average
cost of updating location pointers due to the random hop
over all sources and graphs.
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Figure 8: Average cost of publish relative to the average

length of the hop for graphs with densities 15 and 20.

Our results in Figure 8 show that the cumulative cost of
updating location pointers due to a random walk is propor-
tional to the length of the average hop. This result agrees
with our theoretical bounds of O(d log d).



11. CONCLUSIONS
This paper presents LLS, the first location service for mo-

bile ad hoc networks to guarantee both worst case bounds
and average case efficiency. Our scheme has inherent fault
tolerance both for node failures and for network partitions.
The generalization of our construction results in a geomet-
ric location service that is locality aware in any Euclidean
metric space.

For any network the worst case cost of our lookup is
quadratic O(d2). For average case networks LLS achieves
linear O(d) expected lookup cost. Mobility of nodes is han-
dled in an efficient proactive manner. LLS ensures that the
expected cost of publish is O(d log d). We provide simula-
tion results for the LLS scheme that conform our theoretical
bounds.

Our simulations show that routing in random ad hoc net-
works is 2-locality aware for various densities. It would be
interesting to give a formal proof backing this result.

A potential area of improvement is reducing the asymp-
totic cost of the publish algorithm. The worst case cost of
the publish algorithm can be easily bounded using similar
techniques as in our lookup algorithm. An open question is
whether an expected O(d) is achievable for both publish and
lookup.
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