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ABSTRACT
We present the �rst optimal randomized online algorithms
for the TCP acknowledgment problem [5] and the Bahncard
problem [7]. These problems are well-known to be general-
izations of the classical online ski rental problem, however,
they appeared to be harder. In this paper, we demonstrate
that a number of online algorithms which have optimal com-
petitive ratios of e=(e� 1), including these, are fundamen-
tally no more complex than ski rental. Our results also sug-
gest a clear paradigm for solving ski rental-like problems.

1. INTRODUCTION
Consider the following online problems:

Ski Rental
Suppose you are about to go skiing for the �rst time in your
life. Naturally, you ask yourself whether to rent skis or to
buy them. Renting skis costs, say, $30, whereas buying skis
costs, say $300. Your goal is minimize your total cost on all
future ski trips. Unfortunately, you don't know how many
such trips there will be. You must make the decision online.
This is perhaps the simplest and most well-understood

online problem. There is a trivial deterministic online algo-
rithm that achieves a competitive ratio of 2 [10], and a ran-
domized online algorithm that achieves a competitive ratio
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of e=(e� 1) (which is about 1.58) in the limit as the ratio
between the buy cost and the rent cost becomes large [9].

Dynamic TCP acknowledgment
A stream of packets arrive at a destination. The TCP pro-
tocol requires that these packets be acknowledged. How-
ever, the possibility exists of using a single acknowledgement
packet to simultaneously acknowledge multiple outstanding
packets, thereby reducing the overhead of the acknowledge-
ments. On the other hand, delaying acknowledgements too
much can interfere with TCP's congestion control mecha-
nisms, and thus it is undesirable to allow the latency be-
tween a packet's arrival time and the time at which the
acknowledgement is sent to increase too much.
This motivated Dooly, Goldman and Scott to de�ne the

following problem [5]. The input is a sequence of n arrival
times a1; a2; : : : ; an. The output is a set of times t1; : : : ; tk
at which acknowledgments occur such that

k +
X

1�j�k

latency(j)

is minimized, where

latency(j) =
X

i s.t. tj�1<ai�tj

(tj � ai):

(It is required that tk � an and k � 1.) The parameter k is
called the acknowledgement cost and

P
j latency(j) is called

the latency cost of the algorithm on that input. Of course in
practice the acknowledgment times must be chosen online
without knowledge of when future arrivals will occur.
Dooly et al. showed that the natural algorithm which

waits until the latency since the previous acknowledgement
equals the cost of the acknowledgement has a competitive
ratio of 2. Subsequently, Seiden [13], and independently
Noga [11], obtained a lower bound of e=(e�1) on the compet-
itive ratio of randomized online algorithms for this problem.
A matching upper bound remained elusive, and in fact no
randomized algorithm was known to beat the 2-competitive
ratio achieved by the deterministic algorithm.
The variant of the problem where packet j has weight wj

and one wishes to minimize k +
P

j wj latency(j) was also
studied, but it is easy to see that for our purposes it is
equivalent to the original problem.

The Bahncard problem
The Bahncard problem models online ticket purchasing in
the German Deutsche Bundesbahn, where one can opt to
buy a Bahncard that entitles the traveler to a 50% discount
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Figure 1: A pictorial representation of TCP ac-

knowledgement.

on all trips within one year of the purchase date. In the
more general setting, the (C; �; T ) Bahncard problem o�ers
a Bahncard for cost C which permits the price of tickets
to be discounted by 0 � � � 1 for time T from the date
of purchase. This extends Ski Rental in three ways: �rst,
the bene�t of purchasing (instead of renting) comes with a
time limit, second, the trip (rental) costs vary, and third,
purchasing merely o�ers a discount rather than a free ride.
Fleischer [7] introduced this model and provided a deter-

ministic algorithm with competitive ratio 2. He also pre-
sented an e=(e�1+�) bound in the case that the Bahncard
never expires and conjectured that this is also the bound for
�nite expiration periods.

One-machine scheduling to minimize weighted comple-
tion time
In this scheduling problem, each job has a processing time
pj , a release time rj and a weight wj { all of these parameters
become known only at the moment the job is released. The
goal is to construct a nonpreemptive feasible schedule S that
minimizes

P
j wjC

S
j , where CS

j is the completion time of
job j in schedule S.
Chekuri, Motwani, Natarajan and Stein [3] have shown

that there is a deterministic 2-competitive algorithm for
this problem and an e=(e� 1) competitive randomized al-
gorithm. Both of these bounds are best possible.

1.1 Our Results
The main contribution of this paper is new randomized

online algorithm for TCP acknowledgement that achieves
the best possible competitive ratio of e=(e� 1). We extend
these ideas to solve the Bahncard problem for �nite expira-
tion periods, thereby settling Fleischer's conjecture.1 Our
secondary contribution is to show that, despite the appear-
ance of greater complexity, all of the problems described
above are just glori�ed versions of ski rental (in a somewhat
interesting and obscure way). We believe that there may
be something fundamental, if simple, going on here in pre-
cisely this sense: online problems with competitive ratios of
e=(e � 1), of which there are many examples, may need to
abstract the ski rental \phenomenon". Finally, our results
suggest a clear paradigm for solving online problems of this
nature.
The rest of the paper is organized as follows. In Sections 2

1We also generalize our solution to get an optimal algorithm
for the case where the discount rate for di�erent trips varies.
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Figure 2: Algorithm Az.

and 3, we present the e=e � 1-competitive randomized al-
gorithm for TCP acknowledgment and its analysis. In Sec-
tion 4, we explain the connection with ski rental. In the
following section, we present the solution to the Bahncard
problem. The general paradigm for solving problems of this
nature is briey discussed in Section 6.

1.2 Definitions
We consider randomized online algorithms against obliv-

ious adversaries. (See, e.g., [2] for a more detailed discus-
sion of randomized online algorithms.) An oblivious adver-
sary must choose the entire request sequence without knowl-
edge of the coin tosses made by the algorithm, but with full
knowledge of the randomized algorithms. We measure the
competitiveness of such algorithms as follows. A random-
ized, online algorithm A is c-competitive against an oblivious

adversary if there exists a constant � such that for all obliv-
ious adversaries

E(CA(I)) � c COPT (I) + �;

where I is the request sequence generated by the adversary,
E(CA(I)) is the expected cost of algorithm A on input I,
and COPT (I) is the optimal cost on input I.
The randomized competitive ratio is then the in�mum

over c such that there is a c-competitive algorithm against
an oblivious adversary.

2. A RANDOMIZED ALGORITHM FOR
TCP ACKNOWLEDGEMENT

The most natural approach to the construction of a TCP
acknowledgement problem is to consider algorithms which
probabilistically vary the amount of latency they tolerate
until an acknowledgment is performed. Unfortunately, Noga
and Seiden have shown that the most natural variants of
such algorithms do not give an e=(e � 1) competitive ra-
tio [12].
The key to our solution is to de�ne a one parameter family

of deterministic online algorithms Az, where 0 � z � 1, that
measures cost that can be directly charged to the optimal
o�ine algorithm.
Algorithm Az is de�ned as follows: Let P (t; t0) be the

set of packets that arrive between time t and time t0, i.e.,
the set of i such that t < ai � t0. Suppose that the
ith acknowledgment occurred at time ti (and assume that
t0 = 0.) Algorithm Az performs the next acknowledgement
at the �rst time ti+1 > ti for which there is a time �i+1,
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Figure 3: Proof of Lemma 3.

ti � �i+1 � ti+1, such that P (ti; �i+1)(ti+1 � �i+1) = z. In-
tuitively, this time is chosen so that, given the fact that the
previous acknowledgement occurred at time ti, in hindsight,
z units of latency cost would have been saved by performing
an additional acknowledgment at time �i+1.
We de�ne a randomized algorithm A that chooses z be-

tween 0 and 1 according to the probability density function
p(z) = ez=(e� 1) and then runs Az.

Theorem 1. Let A be the randomized algorithm that

picks z between 0 and 1 according to the probability density
function p(z) = ez

e�1
and runs the deterministic algorithm

Az. The competitive ratio of A is e=(e� 1).

We will �nd the following pictorial representation of the
input and algorithm very useful in explaining our algorithms
and proofs. Figure 1 shows an example of the TCP ac-
knowledgement problem. The x-axis represents time and
on the y-axis, we plot the number of packet arrivals by that
time. The sequence of packet arrivals de�nes a step function
of equation y(t) = jP (0; t)j. The dots on the x-axis indi-
cate times at which acknowledgements are sent by the algo-
rithm. The algorithm de�nes a staircase curve g such that,
if acknowledgements are sent at times t1; t2; : : : ; tk, then for
ti � t < ti+1, g(t) is constant and equal to jP (0; ti)j. It is
easy to see that the latency cost of the algorithm is exactly
the sum of the areas of the shaded regions on the �gure, i.e.,
the area between the curve of the algorithm and the curve
of the packet arrivals.
Figure 2 shows an example of what algorithm Az might

look like. (Subsequent �gures will be simpli�ed by drawing
the packet arrival sequence as a straight line.)

3. ANALYSIS OF THE ALGORITHM
The main diÆculty of our proof lies in the analysis of

algorithm Az for general values of z. As a warmup, we start
with the (simpler) analysis of algorithm A1.

3.1 Analysis of algorithm A1

The following lemma, although not central to the analysis,
will help clarify the picture.

Lemma 2. Without loss of generality, we can assume that
the optimal algorithm sends an acknowledgement between
any pair of successive acknowledgements of algorithm A1.

Proof: Consider an arbitrary input sequence I, and sup-
pose that A1 acknowledges at times ti. Consider any se-
quence S of acknowledgements, and assume that it does not
send any acknowledgement in (ti; ti+1). Enrich this sequence
by sending an additional acknowledgement at time �i. The
acknowledgement cost increases by 1, and the latency cost
decreases by at least 1, so this new sequence is at least as
good as S. Hence there is an optimal sequence which sends
at least one acknowledgement in each interval (ti; ti+1). 2

With the help of this representation, we are ready to an-
alyze algorithm A1.

Lemma 3. Algorithm A1 is 2-competitive.

Proof: Consider an arbitrary input sequence I. The cost
CA1 of A1 on input I satis�es

CA1 � nOPT + latency(OPT ) + latency(A1 n OPT );

where nOPT is the number of acknowledgements performed
by OPT on input I, and latency(A1 n OPT ) is the latency
incurred by A1 that is not incurred by OPT . However,
it is easy to see from Figure 3 that latency(A1 n OPT ) is
precisely the area of a set of rectangles (shaded in the �gure),
where each rectangle has its left side at the time when OPT
sends an acknowledgement, and its right side at the following
time when A1 sends an acknowledgement. By de�nition
of algorithm A1, all these rectangles have area at most 1.
Hence, latency(A1 nOPT ) � nOPT and we obtain that

CA1 � COPT + nOPT � 2COPT :

2

3.2 Analysis of algorithm Az

We now turn to the analysis of algorithm Az. First, we
need to understand how the cost of algorithm Az relates to
the cost of OPT on any input. Let nz(I) denote the number
of acknowledgements of algorithm Az on input I. Looking
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Figure 4: Analysis of Az, proof of Equation 1 and de�nition of Ez.

at Figure 4, we see that the latency cost of Az is bounded by
(a) the area above the OPT curve, plus (b) the area under
OPT and over Az (dark shaded area in Figure 4), minus (c)
the area, denoted Ez(I), under Az and over OPT (lightly
shaded area in Figure 4).
Term (a) is just COPT(I) � nOPT(I), the latency cost of

OPT . Term (b) can be analyzed as in the proof of Lemma 3:
it is just a set of nOPT(I) rectangles, each of which has area
at most z by de�nition of Az, for a total of at most znOPT(I).
Hence:

CAz(I) � nz(I) + COPT � nOPT(I)

+znOPT(I)�Ez(I): (1)

Lemma 4. Let nz denote the number of acknowledgements
of algorithm Az and nOPT denote the number of acknowledge-
ments of the optimal algorithm on some input I. Then the
area Ez above the optimal curve and below the Az curve on
input I is at least:

Ez �

Z
1

z

nwdw � (1� z)nOPT:

Proof: Fix an input I. Let L(n; z) be the minimum, over
all acknowledgment sequences S with n acknowledgements,
of the area above the S curve that is below the Az curve.
L(n; z) is a monotone non-decreasing function of n. Thus
we have, since nOPT � n1 by Lemma 2: Ez � L(nOPT; z) �
L(n1; z). We will prove a lower bound on L(nu; z) for all
u � z.
We claim that for any u > v � z,

L(nu; z) � (v � z)(nv � nu) + L(nv ; z): (2)

The proof is illustrated in Figures 5 and 6. Figure 5 shows
three acknowledgement sequences for the given input: S,
the acknowledgement sequence with nu acks that minimizes
L(nu; z), and the acknowledgement sequences of Av and Az.
The shaded areas in Figure 5 represent the nv area v rect-
angles which caused algorithm Av to send an acknowledge-
ment. At most nu such rectangles intersect the curve S, so
there are at least nv � nu of these area v rectangles which

lie above S; the upper left corners of these are circled in
Figure 5. Let T be the set of times at which these nv � nu
rectangles begin (if there are more than nv � nu of these,
then we choose any nv�nu of them to de�ne the set T .) We
de�ne a new acknowledgement sequence S0 = S [ T . The
resulting curve is shown on Figure 6.
Since jSj = nu and jT j = nv�nu, the number of acknowl-

edgements in S0 is precisely nv . The nv�nu rectangles of T
are all between S and S0. Each of them has area v, of which
an area of at most z can lie above Az (by de�nition of Az).
Thus the area above S is at least (v � z)(nv � nu) plus the
area above S0. These facts combine to give us Equation 2.
Taking u = v + dv, we obtain from Equation 2

L(nv+dv; z) � (v � z)(nv � nv+dv) + L(nv; z):

Rewriting and integrating from z to 1, we obtainZ 1

z

dL(nv ; z) �

Z 1

z

�(v � z)dnv

which gives us

L(n1; z)� L(nz ; z) �

Z
1

z

nvdv � (1� z)n1:

Observing that L(nz; z) = 0, and that L(n1; z) is a lower
bound on Ez gives the lemma. 2

Letting z tend towards zero, the Az curve tends to the
curve of packet arrivals, so that limz!0Ez is equal to the
latency of OPT , and Lemma 4 then yields the following
corollary.

Corollary 5. The cost incurred by the optimal o�ine
algorithm on input I, COPT, is at least

COPT �

Z
1

0

nzdz:

3.3 Analysis of the randomized algorithm
We can now prove the main theorem, of which Theorem 1

is a simple corollary obtained by plugging in the ski rental
distribution p(z) = ez=(e� 1).
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Figure 5: Proof of Lemma 4: setup.

Theorem 6. Let A be the randomized algorithm that
picks z between 0 and 1 according to the probability density
function p(z) and runs the resulting algorithm Az. For any
input I, the ratio between the expected cost incurred by A on

I and the optimal cost on I satis�es

CA(I)

COPT(I)
� 1 +

R
1

0
(p(z)� P (z))nzdzR

1

0
nzdz

; (3)

where P (z) =
R z
0
p(x)dx.

Proof: Let CA denote the expected cost incurred by the
algorithm A. Combining the calculation below with Corol-
lary 5 yields the theorem.

CA �

� COPT � nOPT +

Z 1

0

p(z) (nz + znOPT �Ez)dz

from Equation (1)

� COPT � nOPT +Z
1

0

p(z)(nz + znOPT �

Z
1

z

nwdw + (1� z)nOPT)dz

from Lemma 4

= COPT +

Z 1

0

p(z)nzdz �

Z 1

0

nw

Z w

0

p(z)dzdw

by changing the order of integration

= COPT +

Z
1

0

p(z)nzdz �

Z
1

0

nwP (w)dw

= COPT +

Z
1

0

(p(z)� P (z))nzdz:

2

4. TCP ACKNOWLEDGEMENT AND SKI
RENTAL

To explain the sense in which the essence of the TCP
acknowledgment problem is ski rental, we briey review the
basic ski rental result.

4.1 Ski Rental
We focus here on the continuous version of the problem.

The input, unknown to the online algorithm, is a nonnega-
tive real number u, representing the length of time that the
skier will actually end up skiing. We refer to this input as Iu.
The skier, or online algorithm, must decide for what length
of time she should rent skis before buying them, without
knowing what u is. The cost of buying skis is 1.
Any deterministic algorithm for this problem is de�ned

by a positive real number z, representing the time at which
the user will buy skis. We refer to this algorithm (to inten-
tionally draw the analogy) as Az.
The cost incurred by algorithm Az on input Iu is

C(Az; Iu) =

�
u if u � z
z + 1 if u > z

The optimal o�ine cost OPT on input Iu is

OPT (Iu) = min(u; 1):

Therefore,

C(Az; Iu)

OPT (Iu)
=

�
1 if u � z
z+1
u

if u > z

We may assume without loss of generality that any online
algorithm (deterministic or randomized) will buy by time 1,
since thereafter, the optimal o�ine does not increase, but
the online cost does. Thus, in our discussion, we assume
that both u and z are between 0 and 1.
Any randomized online algorithm A for ski-rental is there-

fore a probability distribution p(z) over algorithms Az where
0 � z � 1. The optimal randomized online algorithm for ski
rental is chosen so as to minimize c, such that for every u,
0 � u � 1,

Z u

0

p(z)(1 + z)dz + u

Z 1

u

p(z)dz � c u: (4)

A straightforward argument shows that we may assume equal-
ity for all u. We can derive a di�erential equation for p(z)
by di�erentiating twice with respect to u, the solution of
which is p(z) = ez=(e� 1). Plugging this distribution back
into Equation 4 gives us a competitive ratio of e=e� 1.
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Figure 6: Proof of Lemma 4, continued: de�ning S0.

4.2 TCP Acknowledgment Basis Inputs
To explain the connection with ski rental, we describe

a one parameter family of inputs Iu, 0 � u � 1, to the
TCP problem. For reasons that will become clear shortly,
we call these inputs our basis inputs. We will show that
when restricted to these basis inputs, the behavior of TCP
acknowledgement algorithms is precisely the behavior of ski
rental algorithms.
The input Iu is de�ned as follows. Let v be a large con-

stant. The input is a sequence of n groups of message ar-
rivals of the following form: vi+1 messages arrive at time
ti+1 where ti+1 = ti + uv�i.
The important property of this arrival sequence is that

even though the latency between message arrivals is u, the
total latency at time tn, assuming no acknowledgements up
to that point, is nu. This is because in each interval the
accumulation of latency due to messages other than those
that arrived in the most recent burst is negligible.
Consider now the behavior of Az on input Iu. Since Az

acks after seeing a rectangle of size z, we have that the cost
incurred by Az on input Iu is

C(Az; Iu) =

�
nu+ 1 if u � z
n(z + 1) if u > z

It is also easy to see that the optimal o�ine cost OPT on
input Iu is

OPT (Iu) = nu+ 1:

Therefore, in the limit, we have

C(Az; Iu)

OPT (Iu)
=

�
1 u � z
z+1
u

u > z
(5)

which by no coincidence is precisely the same as the corre-
sponding ski rental bounds. From this we can conclude that,
were our inputs restricted to the set Iu, we could easily use
ski rental results to construct a randomized TCP acknowl-
edgment protocol that achieves the e=e�1 competitive ratio.

4.3 The final piece of the puzzle
The question then becomes: why do the basis inputs cap-

ture the essence of the TCP acknowledgment problem? To
understand this, we return to the inequality 3 derived in

Theorem 6 for the competitive ratio of the randomized al-
gorithm A that uses probability distribution p(z) over al-
gorithms Az. Returning to the basis inputs Iu, we observe
that

nz(Iu) =

�
n z � u
0 z > u

(6)

Therefore on the input Iu, Equation 3 becomes

CA(Iu)

COPT(Iu)
� 1 +

n
�R u

0
p(z)dz �

R u
0
P (z)dz

�
nu

= 1 +

R u
0
p(z)dz � uP (u) +

R u
0
zp(z)dz

u
(by integration by parts)

which is precisely the same equation we get for ski rental
(obtained from Equation 4).
Finally, we recall that for any input I, nz(I) is a non-

increasing function of z, de�ned over the range 0 � z � 1.
Thus, from Equation 6 we see that we can represent nz(I)
as a linear combination of our basis functions

nz(I) =

Z
1

0

�unz(Iu):

(In fact, this is a �nite sum, since nz(I) only changes a �nite
number of times in the interval 0 to 1, as there are only a
�nite number of message arrivals.)
Thus, we have that for any input I

CA(I)

COPT(I)

� 1 +

R 1
0
�u
�R u

0
p(z)dz � uP (u) +

R u
0
zp(z)dz

�
duR 1

0
�uudu

� 1 +max
u

�R u
0
p(z)dz � uP (z) +

R u
0
zp(z)dz

�
u

=
e

e� 1

where the �nal equality is achieved, as in the ski rental prob-
lem, with p(z) = ez=(e� 1).
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Figure 7: The Bahncard Problem

5. THE BAHNCARD PROBLEM
We now outline how the machinery set forth in the sec-

tions 3 and 4 easily translates into an optimal online algo-
rithm for the Bahncard problem with a competitive ratio of
e=(e� 1 + �). In particular, we show that embedded in the
Bahncard problem is another rendition of ski rental.
Following [7], we de�ne the Bahncard problem input pa-

rameters (C; �; T ), where C is the cost of a Bahncard, 0 �
� � 1 is the discount awarded with a Bahncard on all trips
within time T from the time of purchase (i.e., a discounted
trip costs � times its full cost). Fleischer provides a ran-
domized algorithm which is e=(e� 1 + �)-competitive when
T ! 1. When � = 0 and the rental costs are the same, the
Bahncard problem is of course precisely Ski Rental. Here we
present an algorithm which achieves the same competitive
ratio for �nite T and varying trip cost. The solution we
present also generalizes to give an optimal algorithm in the
case where there is a di�erent discount �i associated with
each trip.
For simplicity in this extended abstract, we assume that

� = 0 (but allow varying trip costs and �nite Bahncard
expiration) and present an algorithm which achieves a com-
petitive ratio of e=(e�1). Fleischer's analysis which extends
the the � = 0 analysis to � > 0 can be incorporated into
our results to establish the conjectured competitive ratio of
e=(e�1+�) for the general Bahncard problem. In addition,
we renormalize so that the Bahncard expires after one time
unit (say, one year) and so the cost of a card is one (where
units, in this case, turn out to be multiples of 240 DMs).

5.1 A randomized algorithm
The key to our analysis is de�ning another appropriate one

parameter family of online algorithms Bz, where 0 � z � 1.
The algorithm Bz buys a Bahncard at the �rst point when
there would have been a cost of z saved had a Bahncard been
purchased at some time earlier in the year. The histogram
depicted in Figure 7 will be useful. We indicate a trip of cost
y at time x by a vertical bar of height y at point x. The sum
of the heights of these bars is the total cost if no Bahncard
is ever purchased. Below the histogram are masks, repre-
senting three possible algorithms, where the horizontal bars
indicate the periods during which a purchased Bahncard was
valid. The total trip cost incurred by each algorithm is the
sum of the bars in the histogram that do not coincide with
a bar in the mask. To demonstrate this, the trip cost for
algorithm Bz is highlighted in bold.

Following lemmas 4 and 5, we �nd:

Lemma 7. Let bz denote the number of Bahncards pur-
chased by algorithm Bz and bOPT denote the number of Bah-
ncards purchased by the the optimal algorithm on some in-
put I. Then:

1. The cost incurred by the optimal o�ine algorithm on
this input, COPT(I), is at least

COPT(I) �

Z 1

0

bzdz:

2. The trip cost Ez incurred by the optimal algorithm that

is not incurred by the Bz algorithm is at least

Ez �

Z
1

z

bwdw � (1� z)bOPT:

The proof of this lemma follows the same format as Lemma 4.
The key idea is to bound L(bu; z), the minimum, over all
Bahncard purchase sequences S with bu Bahncards, of trips
which cost full price according to S but which are free with
Bz. As before, for z � v < u,

L(bu; z) � (v � z)(bv � bu) + L(bv; z): (7)

To prove this, we observe that there are at least bv � bu
periods in which Bv accumulates a trip cost of v (justifying
one of its Bahncard purchases) in which S also pays full
fare. During each of these periods Bz can only accumulate
a trip cost of z. Let T be the times which are exactly one
time unit before Bv buys these bv � bu Bahncards, and as
before, let S0 = S [ T be a new purchasing schedule which
purchases bv Bahncards. (See Figure 7.) These facts give
Equation 7. Following the remaining steps of the proof of
Lemma 4 completes the proof.
This lemma can be used to prove the analogue of Theo-

rem 6, giving

Theorem 8. Let B be the randomized algorithm that
picks z between 0 and 1 according to the probability density

function p(z) and runs the resulting algorithm Bz. For any
input I, the ratio between the expected cost incurred by B
on I and the OPT cost on I satis�es

CB(I)

COPT(I)
� 1 +

R 1
0
(p(z)� P (z))bzdzR

1

0
bzdz

:
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As before, letting p(z) = ez

e�1
gives e=(e � 1) for the com-

petitive ratio of B. This matches the lower bound proved
by Fleischer.

5.2 Basis Inputs for Bahncard
The notion of basis inputs also generalizes from the TCP

acknowledgement problem and provides a more explicit con-
nection between the Bahncard problem and ski rental.
Again, we de�ne a one parameter family of inputs Iu,

0 � u � 1, to the Bahncard problem. Let m be a large
constant. The input is a sequence of m trips, all costing
u=m and occurring within one unit of time. Algorithm Bz

will purchase a Bahncard after spending amount z if u � z
and will never purchase if u < z. Summarizing this and
taking the limit, we have that the cost incurred by Bz on
input Iu is

C(Bz; Iu) =

�
u if u � z
z + 1 if u > z

The optimal o�ine algorithm will never buy a Bahncard and
will incur a cost of OPT (Iu) = u; giving the same ratios as
ski rental and TCP acknowledgement. Since bz is a non-
increasing function of z, the appropriate linear combination
of our basis functions shows that the behavior of Algorithm
B on Iu completely captures its behavior on any input. This
reestablishes the optimal competitive ratio for the Bahncard
problem.

6. FINAL REMARKS
The solutions to ski rental, TCP acknowledgment, the

Bahncard problem and scheduling to minimize weighted com-
pletion time all fall within a common framework. There is
a one-parameter family of algorithms, each de�ned (though
not always explicitly) in terms of savings the optimal o�ine
algorithm would have incurred had it \acted" earlier. This
seems to be a principled approach to solving such problems,
and inherently leads to the ski rental equation 4 whose so-
lution yields a competitive ratio of e=e� 1. We will expand
upon these ideas in the full paper.
One of the most interesting unsolved mysteries about e

e�1

concerns the problem of scheduling on m uniform machines
to minimize the makespan. In this problem, a sequence of
jobs is presented one by one, each characterized by its run-
ning time. The online algorithm is required to schedule each
job on one of themmachines before seeing the next job, with
performance measured by the makespan. The classic result
of Graham shows that List Scheduling achieves a competi-
tive ratio of 2� 1=m [6]. The best bounds currently known
on the competitive ratio for deterministic algorithms are an
upper bound of approximately 1.92 [1, 8] and a lower bound
of approximately 1.85 [1]. For randomized algorithms, there
is a lower bound of e

e�1
[4, 13]. However, it is currently not

known whether there are randomized algorithms that beat
the deterministic ones for m large. This is one of the most
notorious open problems in online scheduling and we do not
resolve it here. However, we are intrigued by the possibility
that there may be a ski rental problem buried within this
one that we simply do not see at this time.
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