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Abstract—We define and study the scheduling complexity in ~ The measure that captures and quantifies this equilibrium
wireless networks, which expresses the theoretically achievablejs time. More specifically, assume that we are given a set
efficiency of MAC layer protocols. Given a set of communica- ¢ giracted links between pairs of nodes that indicate com-

tion requests in arbitrary networks, the scheduling complexity icati ts. H h ti - ired t hedul
describes the amount of time required to successfully schedule munication requests. Row much tme IS required to schedule

all requests. The most basic and important network structure @l these requests? In this paper, we define and study this
in wireless networks being connectivity, we study thescheduling scheduling complexityn wireless networks. Like, for instance,

co_mplexity of connectivityi.e., the minimal amount of ti_me re- the notion ofnetwork capacity12], the scheduling complexity
quired until a connected structure can be scheduled. In this paper, expresses a fundamental law that governs communication in

we prove that the scheduling complexity of connectivity grows . - . .
only polylogarithmically in the number of nodes. Specifically, we wireless multi-hop networks. While roughly speaking, the

present a novel scheduling algorithm that successfully schedules acapacity of a wireless network describes the maximum amount
strongly connected set of links in timeO (log*n) even in arbitrary ~ of information that can be transmitted in the network, the

worst-case networks. scheduling complexity indicates the minimum amount of time

ch(‘jlﬂi‘r? Ot:‘;'(')g‘oal‘gdc‘a‘r’]"e ee;g;’ri mﬁéhsmﬁjsaerdpg@fu:;yfra?,r required to transmit over a set of communication links. As it

protocol tf?a? either emplo;)s uniform or linear (a node’s traz’smity trns out, studying _the scheduling complexity of ereles_s ”.Et'
power is proportional to the minimum power required to reach WOrks reveals previously unknown aspects of communication
its intended receiver) power assignmenhas a Q(n) scheduling in wireless networks.

complexity in the worst case, even for simple communication In order to obtain results that capture the inherent char-
requests. In contrast, our polylogarithmic scheduling algorithm  acteristics of wireless networks, much care has to be taken
allows many concurrent transmission by using an explicitly o, choosing the communication model. Multi-hop wireless

formulated non-linear power assignmenscheme. ks h f b deled hs. Th d
Our results show that even in large-scale worst-case networks, networks have often been modeled as graphs. € nodes

there is no theoretical scalability problem when it comes to Of this communication graph typically represent the physical
scheduling transmission requests, thus giving an interesting devices, two nodes being connected by an edge if and only if

complement to the more pessimistic bounds for theeapacityin  the respective devices are within mutual transmission range.
wireless networks. All results are based on thephysical model In this graph-theoretic model a node is assumed to receive

of communication, which takes into account that the signal-to- ty if and v if th de in cl
noise plus interference ratio (SINR) at a receiver must be above a message correctly It and only 1r no other node In close

a certain threshold if the transmission is to be received correctly. Physical proximity transmits at the same time. It is therefore
not surprising that in graph theory, interference-free concur-

I. INTRODUCTION rent transmissions typically boil down to solving variants of
coloring or independent set problems (e.g. [25]).

A most important lesson in wireless multi-hop networking Clearly, this graph-theoretic notion of interference is a
is that concurrent transmissions may cause interference.td@mendous simplification of the physical reality faced in
a network, if too many devices transmit simultaneously, theireless networks [10], [2]. Particularly, the interference
interference caused by these transmissions will prevent eaused by different transmitters may accumulate and is not
intended receiver from receiving the signal, i.e., the messagéisary, i.e., does not stop at a any specific border. Moreover,
lost. On the other hand, if too few nodes transmit at the samiéen transmission powers are properly assigned, a node
time, valuable bandwidth is wasted and the overall throughpuiay successfully receive a message in spite of being in the
may suffer. Hence, the classic problem faced by any MAansmission range of other simultaneous transmitters. In fact,
layer or scheduling protocol is that neither selecting too mamay message is successfully received by a node if riim
nor too few devices for concurrent transmission is acceptabbetween the received signal strength on the one hand and
Instead, it is necessary to find the subtle balance, in whitiihe ambient noise plus interference from other nodes on the
a large number of devices transmit in parallel and yet, tlther hand exceeds a certain hardware-specific threshold. The
interference does not cause messages to be lost. communication model adopting this notion of signal-to-noise-



plus-interference ratio (SINR) is also known as teysical In this paper, we show that the result of both of these
model[12]. power assignment schemes can be disastrous. In a network

In this paper, we adopt this physical model of communic&onsisting ofn nodes, we prove that any scheduling approach
tion and study the scheduling complexity, i.e. the question tifat uses auniform or linear power assignmermgotentially
how much time is required in order to successfully transmiequires up to time©(n) in order to schedule links that
messages over a given set of communication links. Formalggnstitute a connected structure. This is exponentially slower
we are given an arbitrary (i.e., not randomly distributed) nethan the scheduling complexity achieved by our polyloga-
work, and a set of directed links representing communicatioithmic algorithm. In fact, we even show thany protocol
requests. For each such link we assign a time slot and a powet usesuniform or linear power assignmentay need up
level such that all simultaneous transmissions are successtol.time ©(n) until every node has been able to transmit
i.e., not violating the signal-to-interference plus noise ratio aticcessfully once. This holds even if the receiving node for
any receiver. In particular, we want an assignment that useseaery sender is selected best-possible, e.g. when each node
few time slots as possible, which is precisely the task facémnsmits to its closest neighbor. Note that this result places
by MAC layer or scheduling protocols. a strong lower bound on the amount of time requiredany

In practical scenarios, it is often not known in advancB®IAC layer protocol (even an imaginary MAC protocol that
where and when communication requests arise. Certain fundatimally schedules the communication requests) if it assigns
mental types of network structures, however, play a vital roteansmission powers uniformly or linearly.
in many applications of wireless networks. Most basically, it Besides being of theoretical interest, the bad scheduling
is typically required that a message can be routed betwemymplexity achieved by uniform and linear power assignments
any pair of nodes in the network. That is, all nodes shoulths practical relevance: It shows that in order to obtain a fast
be connected by eommunication backbonsuch as a tree or scheduling of sending requests in wireless networks, MAC
any other suitable network topology. layer and scheduling protocols should adopt neither uniform

In the main part of this paper we therefore study theor linear power assignment. Instead, the remedy against this
scheduling complexity ofonnectinga given number of nodes loss of efficiency is a highly non-linear assignment of power
located at arbitrary positions by some communication trelevels. That is, our polylogarithmic scheduling algorithm uses
For this basicconnectivity problemwe present an algorithm an explicitly defined power scheme that lies “in between”
which constructs a spanning tree, and assigns power levels andorm and linear power assignment. Particularhany dif-
time slots to each link of the tree such that in polylogarithmiferent power levelare required in order to achieve an efficient
time, all transmissions are received correctly, i.e., withosthedule.
violating the signal-to-interference plus noise ratio at any The rest of this paper is organized as follows. In Section II,
receiver. In other words, we prove that for the most basic of alle formally introduce and define the communication model
network properties, connectivity, the scheduling complexity end thescheduling complexityrespectively. The limitations
polylogarithmicin the number of network nodes. This resulbf uniform and linear power assignments are studied in subse-
is astonishing because it shows that even in the harsh SIN&ent Section IIl. We then propose an efficient polylogarithmic
model and in large-scale networks, scheduling communicatischeduling algorithm in Section IV. The performance of a
requests (even if they must result in a connected structursijnple and natural, but worst-case inefficient linear power
can be achieved efficiently. Hence, theoretically, there is @mgsignment algorithm is analyzed in Section V. An overview
fundamental scalability problem in wireless networks when d@f related previous work is given in Section VI and finally,
comes toschedulingcommunication requests. Section VIl concludes the paper.

Our upper bound is intriguing because standard MAC layer
protocols and power assignment schemes can perform much
worse. In particular, two different power assignment schemesWe consider the network node§ = {z4,...,z,} to be
have typically been studied and adopted in wireless networkscated arbitrarily (even worst-case) in the Euclidean plane.
In uniform power assignment schematb nodes transmit with The Euclidean distance between two nodgsz; € X, is
the same transmission power [11].linear power assignment denoted byd(xz;,z;). For a (directed) linkf;; = (z;,z;),
schemesit is assumed that if a node wants to transmit /(f;;) = d(z;,x;) denotes the distance between its endpoints.
a message to a node that is located in distadic¢hen = Finally, theball B(z;,r) of radiusr around noder; contains
should send with a transmission power Bf = p - d*, for all nodesz; € X for which d(x;,z;) < r. For simplicity and
some constang, whereq is the so-called path-loss exponentwithout loss of generality, we assume that the minimal distance
In other words, the strategy of most MAC layer or powebetween any two nodes is and we defineA = log(4naz),
control protocols (e.g. [26], [20], [22], [32], [30], [1], [29]) where/,,.. is the largest distance between two nodes.
is to either let all nodes send at the same power, or to adjusWVith what power level should nodes send in a certain time-
the transmission power level of a packet to be proportional $tot? Intuitively, if the power level is large, more nodes can be
Py.in, Where P,,,;,, is the minimum power required such thatovered, at the same time causing an increase in interference
in the absence of interference from other nodes, the SINRfated by other nodes. In the following, we formally define the
the intended receiver is just enough for decoding the packetotion of a power assignment.

Il. SCHEDULING COMPLEXITY



As in [12], we assume without loss of generality thascheduledat time-slott if x; successfully receives a message
transmissions are slotted into synchronized slots of equdedm z; according to the SINR Inequality (1).
length. In each time-slot, a nodex can either transmit | ot E, be the set of all successful links in time-slat

or not transmit a message. power assignmentetermines \ye want that after as few time-slots as possible, the union
the power level chosen by each node in a certain time-sigt. 4 link-sets E, forms the desired network topology, e.g.,

Formally, a power assignmen is a functiong; : X — R™  connectivity. We therefore define the scheduling problem for
which maps every node in the network to a power level. V‘@given network property as follows.

denote by¢;(x;) the power level of node; in time-slotz. _ ] .
If a node is not scheduled to transmit in this time-slot, then Definition 2.2: The scheduling problem for a network prop-

¢+(x;) = 0. In case it is clear from the context which time-slof' Y Vs to fm(.j a scheduleS of minimal Ie.ngth T(S)’

¢ is meant, we also use the notational short-But= ¢, (x;). su;:(f;)that the_ L_lnlon of all successfully transmitted links-=

A scheduleS = (¢1, ..., ¢r(s)) is @ sequence 6f (S) power Ui—1" B¢ satisfies property.

assignments, wherg; denotes the power assignment in time- As an example, the scheduling problem wheris connec-

sloti. Finally, we callT'(S) thelengthof scheduleS. That is, tivity translates to finding a schedufeof minimal length in

a scheduleS of length T'(S) determines the power levg?, Which all successfully transmitted links strongly connect the

for every noder; € X for T'(S) consecutive time-slots. network, i.e., there exists a path between all pairs of nodes.
A major aspect of the model is the description of the ciFinally, we define the scheduling complexity of a network

cumstances under which a message is received by its intenge@perty ¥.

recipient. As mentioned in the introduction, in this paper Definition 2.3: The scheduling complexityof a network
we adopt thesignal-to-interference plus noise rat(SINR) property ¥ is the minimal number of time-slotd’, such

model physical model[12]) in order to determine whetherthat there always exists a valid scheddlefor ¥ of length
a transmission is successfully received. In this model, the— T(S).

successful reception of a transmission depends on the receive\g\/ith regard to a scheduling algorithpd, we also refer to
signal strength, the ambient noise level, and the interferen[ '

% scheduling complexity afl as the number of time-slots
caused by simultaneously transmitting nodes. Petbe the d piexity

. . required by this algorithm in the worst-case to schedule the
signal power received by a node. and let I, denote the Fesired network property.

amount of interference generated by other nodes. Finally, et.l.he scheduling complexity in wireless networks is a fun-

Ntbe the_ambmq{t notljse pfwer;?veiThen,ha nmde((jacel\ies damental measure that indicates how quickly communication
a ftransmission It and only Iy=77- = 5, where 5 denotes requests can be established. In this regard, sitleeduling-

the minimum signal to interference ratio that is required for&)mplexitycomplements the notion ofapacity in wireless

m?rfs\;i\l/?rzlsss enzgfxc/:grekssSfl:rI:)e/z r\?eiﬁlilegf received signal pow nre tworks that has been studied in the past. Whapacity
P is a decreasin func,tion of the distanée: ) k?etwegn %aptures the amount of information that can maximally be
" 9 s> &r sent in abest-casescenario (i.e., without assuming worst-

:Laenfglc'g:/ :agos?;]salaggvcgf?;ﬁrbneo?:c;del\l/(la?jrea;p degég;?:;/’ Wc%se restrictions on the network topo!ogy over which messages
distanced(z,, z,) as—L—. The so-called path-loss eXpo_rlﬁust pe sent), thecheduhng—.complexngf awwel_ess qetwork
nenta is a één;tant db(éﬂf\/’\:fézé}land6 and depends on externaldescnb(’:‘S hqw fg St |r_1format|on (':an.be transmltted wcm;t-
ditions of the medium, as well as the exact sender-recei\(/:arse.Scenano’ e, if communlcgt[on links must satisfy a
g(i)sr:ance. As customary, \;ve assume that 2 [12]. Cehtain property _such as conne<_:t|V|ty. He_nce, the s_c_hedullng
Let P, be the power level assigned to nomein a time-slot. complexity describes the theoretically achievable efficiency of

A message transmitted from a node € X is successfully any MAC layer or scheduh_n g protocol, . .
. : Note that we could define the scheduling complexity of
received by a node,. if

wireless networks in an alternative, but equivalent way. Par-

du’ﬁ ticularly, the scheduling complexity also captures the minimal
Nty P = B @) number of non-interfering frequencigbat are required in
i €X\{zs} d(zs,am)®

order to schedule a desired network property sirgle time-

As for notation, I,.(z,) = dzv’fig,r)a denotes the amount of slot Throughout the paper, we will focus on ttime aspect of
interference encounteredat caused by a node, that is con- the scheduling complexity, but all our upper and lower bound
currently transmitting. Finally, the total interferenteexperi- results immediately apply to frequencies as well.
enced by a receiver, is the sum of the interferences created
by all nodes (except the intended sende) in the network, [11. LIMITATIONS OF UNIFORM AND LINEAR POWER
i.e., thetotal interferenceat =, is I, = }_, c x\ (4.) Ir(2i)- ASSIGNMENT

Definition 2.1: Consider a time-slot and a power assign-

. - In this section, we prove the deficiency of the power
ment ¢,. We say that a directed linkz;, z;) P Y P

is successfully assignment schemes that have been widely studied in the field
INote that all our results can directly be generalized to the case in Whi% wireless networks (and that have also been adODted_ by
nodes can use multiple non-interfering frequencies simultaneously. most standard MAC layer protocols). We study the scheduling



Xg message at,., which yields the contradiction. Because at most
% + 1 links can be simultaneously scheduled in any time-

' slot, the algorithm requires at least- <2QT+[3)_1 time-slots
Tig- 1. Example with nodes; being located at positiom; = 2*, i = g schedule all nodes at least once, from which the theorem
et follows. O
The other intuitive and frequently adopted way of assigning
power levels when scheduling a set of nodes is the following:
complexity of the following property¥,,,;,: Every noder € |ntended senders transmit at a power level thaprispor-
X can send at least one message successflliyte that tional to the minimal powerequired for transmitting over
property ¥,,,;, does not restrict tavhich other node a node the wireless link (e.g., [20], [29], [1]). In other words, for
must send, i.e., nodes can for instance select their neamgspair of senders; and receiverr;, s; sends with power
neighbors as receivers. In other words, we investigate tpe — ;. d(s;,r;)®, wherep is a constant which depends on
following simple and fundamental problem: How much timghe values ofy, 3, and the ambient nois&. Sinced(s;,r;)®
is required until every node can successfully transmit ong the minimal amount of power necessary to reactirom
message, when the receivers for each sender are selected yest seems natural to let nodes send with a power that is
possible. proportional tod(s;,r;)®. We call such a power assignment
Because of its simplicity, achieving good solutions folinear, because the power assigned to a node depends linearly
this problem (i.e., good scheduling complexity for propertgn the minimal power required for its link.inear power
¥in) S€EMS to be easy and intuitively, one would expegksignmentshave been assumed in many papers written on
that simple MAC layer protocols achieve a good performancepology control (e.g. [24]), in papers that study the issue of
Surprisingly, however, the opposite is true. We prove in thisnergy efficiency in wireless networks (e.g. [29], [1]), and in
section that generally accepted power assignment schemessafie MAC layer protocols [20]. However, like in the uniform
incapable of achieving a reasonable scheduling complexisise, protocols using linear power assignment can perform
even for the simple problend,,;,. In the worst case, suchpadly even for the basic requiremedt,,,,.
protocols have the same asymptotic performance as a protocc;+heorem 3.2:Assume that every node; that intends to

that schedules each single network node individually. send a message over a link of lengthtransmits with power

One way of assigning power levels in a radio network is t@s — p- £, for an arbitrary constant which may depend on
let every node transmit at the same power. Suiform power . B q

i ) ) , B, or N. The scheduling complexity for proble®,,,;,, in
assignmenschemes have been widely studied [26], [11], [13] ;-4 3 |inear power assignmentris min{1, 3/2°} € Q(n),
and adopted in practical systems. However, the foIIowir]g,en in the absence of ambient noise.
theorem states that even for propefy,;,, the scheduling
complexity of a uniform power assignment algorithm is linear ~ Proof: Consider again the example given in Figure 1.
in n. Let z; be a transmitting node in an arbitrary time-stotin
Theorem 3.1:Assume that every node; has the same & linear power assignment, it transmits at least with power

transmission power. The scheduling complexity for problerh’ = p-d(w;, w;—1)", for some constani. As a consequence
,.:, in such a uniform power assignment is at |935$6.+/a ¢ Oof this transmission, all nodes;, j < i face an interference
Q(n), even in the absence of ambient noise. of at least

N SRR 8 . 16// 7777777 o Which is not sufficiently high for a correct reception of the

. . . «

Proof: Consider the example given in Figure 1, in Li(z;) > M - %
which nodeszy, ..., z,_; are placed on a straight line with (2d(zi, zi-1))" 2
expopentially iqcreasing distancef between them. We prqygcause the distancé(z;, z;) is at most2d(z;, ;1) in
that in each time-slot, at mosf; + 1 nodes can sendhe exponential line. Because at least the same amount of
successfully if the transmission POYEr 15 uniform. AssUMgterference is caused by all simultaneous sendgra node
for contradiction that there aré = =- + 2 nodes sending x; faces a total interference of at ledst> R - £, whereR
successfully in the same time-slot, anddetbe the right-most s the number of sending nodes to the rightagt Now, let
of these transmitters. Further, assume tha transmission is z, be the left-most node that sends a message in timesslot

successfully received by node. On an exponential line, if,  ang letx, be its receiver. Because the SINR at everymust
is to the left ofxy, it holds thatd(x;, z,.) < d(x,z,) for each pe gt leasts, i.e.,

simultaneously transmitting nodg. If =, is onz,'s right, it

holds thatd(z;, z,) < 2d(zs, z,) for each suchz;. Because % P20
all transmission power® are equal and:; is the right-most NJ;R' 7 = 2aN Tt R > B
. " 5a p.
sender, the SINR at, is therefore at most
p N N From this, it follows that the maximum number of simul-
(@, z,)° 2290 < taneous senderf,,,. can be at mostR,,.. < 2 and

< - )
N+(L-1) ggaaye  L—1 2940 consequently, the algorithm requires at leastmin{1, 5/2%}



for scheduling all nodes. Note that this result holds even Afigorithm 1 Polylogarithmic Scheduling Algorithm
there is no noiseV. [0 Input: An arbitrarily located set of nodes

In reality, botha: and 8 are small constant values. HenceQutput: A schedules satisfying strong-connectivity
Theorems 3.1 and 3.2 show that even in the most basi¢ A:.=X; ¢t:=1; v >4N; pu =34 925+2a ﬁ%;
s_chedullng prpblemIfmm, only a small constant nu_mbeof_ 2: while |A|>1 do {+ Phasep }
links can be simultaneously scheduled when adopting uniform. F, = 0;
or linear power assignment schemes. &6t 4 and3 = 7dB, 4. for each z; € A do

for instance, at most links can be scheduled in parallel. It . choosez; € A\ {z;} minimizing d(z;, z;);
follows that any MAC layer or scheduling protocol that assigns;, fij = (2, 25);

transmission powers according to either of these two policies. it fi; ¢ ]:p‘ then F, := F, U fy;; fi
performs disastrously in the worst-case. In the subsequegt ond for

section, we show how aon-linear power assignmenfields 4. | gt £ — Lo, ..., La_1, such thatL is the set

much more efficient schedules. Specifically, we prove that in of links f;; of length2* < ¢(f;;) < 2++1;
every network (including the one shown in Figure 1), no fewey,. pglete alljempty Iength?:lass]efsﬂ and rename’

4 ; ; e
than Q_(n/ log™n) links can simultaneously be scheduled in such thatl.;, is the " largest non-empty length-class:
each time-slot. 11:  for each z; € Awith fi; € 7, do A:=A\ {z;};

IV. THE COMPLEXITY OF CONNECTIVITY 12:  for j =0tolog(4fn)—1do »
In this section, we present an algorithm which, for every3: Schedule allf;; € F, N g P thog(4,@n)+j>
possible placement of: nodes in the plane, successfully using subroutineschedule()

schedules atrongly connected subgragh O(log*n) time- 14:  end for
slots. This proves that in wireless networks, the scheduling: end while
complexity of strong-connectivity is at most polylogarithmici6é: ¢.(z;) := NG - £2,,.. for x; € A

in the number of nodes. 17: S :={d1,. .., 11 };
Theorem 4.1:The scheduling complexity of strong-
connectivity in wireless networks is at mastlog*n). Subroutine Schedule():

This theorem captures a fundamental characteristic of wireless _
networks: scheduling a strongly connected topology theoretil: Let 7 be the set of links to be scheduled,
cally remains efficient in every wireless network, even when classified in at mosp = [ 7155 — 1] length classes

n becomes large. As shown in Section I, this is in contrast L' = L},...,L};
to the2(n) scheduling complexities achieved by uniform and2: for each f,, € FNL; do 7(z,):=p—k+1;
linear power assignment protocols. 3: while F # () do

Algorithm 1 proceeds iphaseseach phase corresponding 4:  for each z; € A do ¢ (z;) :=0; end for

to an iteration of the outermost loop. The purpose of this: F;, :=F; E;:=10;
outer loop is to gradually reduce the numberagtive nodes 6 while 7 # () do

x; € A. Initially, the set of active noded contains all nodes, 7: choose the linkf;; € 7 of minimal length;

and whenever a node becomes passive (by being discarded By = E U{f5} Fo=FA\ALG)

from A), it does not transmit in any subsequent time-slot.o: bi(x4) = u(4ﬁn)7<”i>€(f;;)a; {*Schedulef;;+}
At the outset of a phase (line 5), every active node:; 10: for each fi, € 7; do

chooses its closest active neighbor, sgy and the directed 11: Oike = 1(xy) — 7(1);

link f;; = (wi,z;) becomes designated to be scheduled ir: if 6,,=0 and z, € B (q:,;,/j,é(f;;)) then
phasep. After breaking cycles of length (i.e. two nodes that 13: Fii=Fe \{fre};

are mutually closest neighbors) in Line F, is the set of 14 else if 2y € B (;, (4715)% .g(f;.)) then
all selected links that are scheduled in phaser, forms a .. Fii=F\ {fuck;

nearest neighborhood foresbnsisting of a set of trees, from . end if

each of which only the root remains active in the next phase. end for

p+1. This process is repeated until there remains only a single.  onq while

active node. At .thIS point, the §cheduled links formieected 5. £ ._ F\E; t=t+1;

treetowards a single node, which can then complete the strogg .

connectivity requirement in a single additional time-slot.
The main challenge is how to efficiently schedule the forest

F». As we have seen in Section lll, neither standard linear nor

uniform power assignments lead to acceptable solutions. SoThe links in 7, are classified into at most different

the problem is: How do we choose the sending nodes andnanh-empty length classek;, such that the length of links

what power levels should they send? As we will see, both if the same class differ by at most a factor Df(Lines 9

these subproblems are strongly interrelated. and 10). The algorithm schedules these links usirg4.5n)

nd while




Of particular interest is the power assignment adopted in
Line 9 of the subroutine. In comparison to a linear power
assignment, the transmission power assigned to an intended
senderz; is scaled by a factor of(44n)7(*), thus dispro-

f3 f / portionally favoring short links over long ones! That is, nodes
,// //// 4 I \\\\ \\\

transmitting to close nodes “overpower” their receivers much
more than transmitters of a long link. Note, however, that

; f5ﬁﬁ fy ! the scaling factordoes notdirectly depend on the length of
f\ ! q)/%/ ; [7; relative to other link. Instead, the power level depends
6 ‘ y;“\'x ‘ ‘ on thelength-classto which f/; is assigned. Because empty
S

length classes were deleted fromh before the subroutine,
Fig. 2. lllustration of Algorithm 1. In the example, link&, f1, and fs are @ hode’s power scaling factor does not depend directly on
dropped fromF;. Note thatfs is not dropped because its receiver is outsidgts |ength Rather, it depends on thelative position of its

the critical ball, even though its sender is close from length classL,, in £’. This somehow counter-intuitive power
assignment in combination with the greedy procedure for
selecting transmitters is the key to our algorithm. It keeps the

calls to aschedule()subroutine, which lies at the heart ofSINR high for aI_I mte_nded receivers, while still allowing to
schedule many links in parallel.

our algorithm. In the first call to the subroutine, it schedules . . ; . .
As shown in Section Ill, neither linear nor uniform power

all links in length classes., Liog(apn) L2105(4pn); - - In the assignment schemes result in an efficient schedule. In contrast,

second call,Ly, Liog(4pn)+1> L210g(48n)+1; - - -» and so forth. . . iy
Y ' ' ) our algorithm’s power assignment liés betweenthese two
In other words, the length classes scheduled in the sam 9 P 9

. extreme cases. Unlike in linear power assignment schemes, it
subroutine call are always separatedlby(45n) — 1 length : . .

. ; . favprs short links over long ones in the sense that they transmit
classes. The idea is that the length of simultaneously schedu : . ;

ar a higher power than actually required to reach the receiver.

links should be either similar (same length class) or VEBut unlike in uniform power schemes, nodes having long links

different, but not in between. ) still use a higher absolute transmission power than short ones.
At the outset of the subroutine, the = [

n
received length classes are renamed/foL}, . . . ,%inénd tlr]e Analysis: We now show that Algorithm 1 is both correct
set F denotes the links that must be scheduled. Schedulidgd efficient. We start with a simple lemma that characterizes
this forestF is done as follows. Each outer-loop iteration of € length ratio between two links that are to be scheduled in
the subroutine corresponds to a time-giah which a subset he same execution of the scheduling subroutine.
of the links of F (denoted byE}) is chosen to be scheduled Lemma 4.2:Let f,, and f,, be two links that are consid-
simultaneously. The selection of; from F proceeds as ered in the same subroutine call, andt¢t) > 7(u), where
follows. Starting from the shortest link, the algorithm greedilg andw are the intended transmitting nodes. Then, the length
picks links f;; (Line 7) from 7, a set denoting the links from of f,, is at least!(f..) > 5(4nB)% - £(fz,).

]_-“that are §t|_|| eligible to be selected in time st(_)tmtlally, all Proof: By Line 13 of the algorithm, only links in length
links are eligible 7; = 7, but whenever a link is selected, ag,,55eq,.

L i L i,...are considered in the
. . . . . j» Hlog(48n)+j51 H2log(46n)+3

shc_)wn in Figure 2, links whosélstance—tol-recelver VS. IengthSame execution of the subroutine. The valuesgf denotes
ratio is too small are removed fro; (Lines 12-15). Such

. - S ) the number of non-empty length classes that separate links

links become eligible again in the next time-slot. f+y and f,.,, each incurring at least a doubling of the length.
As we show in Lemma 4.8, this distance-length threshotghking into account that lengths can differ by at most a factor

avoids that too many links are discarded frgmin any time-  of 2 within a length-class, it follows that(f,,) is at least

slot. The specific distance-length ratio of a lifik depends on

the valuer(z;), which expresses that length class containingt(f,,) > €(fu,) - 2% e =1 — g(f, 3. 1(477,5)5“.

fij is the 7(z;)*™® shortest length-class of the phase. For 2

two intended senders; and z,, the valued,;, denotes the . D_
difference between(z;) andr(z,), i.e., the number of length Ve now show that the schedule obtained by Algorithm

classes separating; and z,. When scheduling the link™ 1lis corrept _In particular, we prove .in Theorem_ 4.6 that
with senderz, and y, in a time-slot, larger linksf; are all transmissionsE; scheduled in a time-slot during the

deleted fror[;LZ-' 1if the intended receiver is located in the balp!90rthm are received successfully by the intended receivers.
Blas, (4nB) 5 . 4(f*)). The intuition is not to schedule g More specifically, we show that the SINR at every intended

link in F if its receiveris in physical proximity of a much receiver flsthgh enoigg, 'fA'f’ Iargder4'[r15g3n In t?)e fogomngt al
shorter, concurrently scheduled link. Note that the radius cﬁerlefs or Lemmas 4. d 4, anad 4. ,hwe oun ;bo a
the ball depends exponentially on the two linkefative length 'Mererence experienced at a receiverthat was caused by
cIassesUsmg a simple d'Stance function instead would eItherzln fact, it can be shown that any power assignment that depends directly
ruin the schedule’s complexity or correctness. on the relative length of links cannot lead to an efficient schedule.




simultaneously scheduled links from smaller, the same, iotended receivers are within distancé f;.) of the sender are
larger length classes, respectively. deleted fromF; in line 13 of the scheduling subroutine. More
Lemma 4.3:Consider a scheduled link, with intended Precisely, around each transmitting nogie there can be no
senderz, and receiverz,. Let I~ be the total interference Other scheduled sendgy from the same length class within
caused at, by simultaneously transmitting nodgsfor which distance at least/(f;) — £(f;) > (u — 2)¢(fi) = “F2U(f))-

7(y;) > 7(x). It holds that This means that diskd; of radius “T‘Qf(fi) centered at
v all transmitting nodegy; from the same length class do not
I < 157(“)71(471)7(“)- overlap. The area of each such diskii€D;) = (“72¢(f;))*n.

. ; ; 1
Proof: Bounding the interference caused by substantiall Co.nsflder ringsfi; of width 2(/‘.‘ ?)K(fz) around z,
. o e . onsisting of all nodesy; for which sk(u — 3)4(f,) <
shorter links is tricky, because our algorithm’s non-linea 1 2 :
. : ) i xr) < 5(k+1)(n— 3)¢(f,). Because the distance from
power assignment scheme assigns such nodes a disproportion= 2 : .
. - ; : L Z, to any scheduled transmitter (in the same length class)
ately large sending power. Consider a lifjkwith transmitting

_ : : . _ exceptz, is at leastl(u — 3)¢(f,), the first such layer?,
nodey;. We begm by showing that the interferenfy;) at does not contain any other scheduled sengdetConsider all
x, caused byy; is at most

transmittersy; in Ry. All corresponding disksD; must be

I(yi) < v(dpn)"@)=L, (2) entirely located in an “extended” ring of area
Assume for contradiction that inequality (2) does not h0|d’A(R ) (k4 1)(—3)e(f;) n (n—2)(f;) 2
i.e., assume that k 2 4
P v(4Bn)"WIL(f,)* ! (z)—1 k(p — 3)e(f; —20(f)\?
I (yi) = = > v(46n)" )T _ p—3)(fi)  (p—=2)Lf)
(y ) d(ylv x’f)a d(yla xr)a ( ) ( 2 4 T
Simplifying the above inequality and definingto be the ratio 1 3\ 2 1\2
X = d(fffff) it must hold that < 7 (k + 2) - <k - 2) ] (1 — 2)20(f)>%r
(4ﬁn)‘r(yi)*7($s)+1 > Xa 1
| = (k+3) 2R
and consequently4pn)~« > x. This means that the
distance betweep; andx, is upper-bounded by Each transmittey; in Ry has distance at leagt(u —3)¢(f.)
Syt from z, and sends with a power at most(44n)"(¥:) .
d(yi ) < L(fy) - (46n) =" (2¢(f.))*. Using the fact that the disk®; do not overlap,

However, this establishes a contradiction to the definition Bfe can bound the interference &t from nodes in ringRy
Algorithm 1. In the iteration of the innermost while-loop inusing a standard area argument.
which f,, was scheduledf, would have been deleted froff,

0 _ .
if d(ys,2,) < £(f,)-(48n) 5 in Line 14. Hencef, andf, DR = > Iy

Yi € Ry
would not have been scheduled in the same time-slot, which
' T(yi) . o

establishes the contradiction. < AlRy) . V(416n) (%(f”?

Because the number of transmitting nodes is at mgst A(D) (3h(p = 3)e(fz))
the total interference caused by transmitters of substantially 16(k + %)u(ﬁlﬁn)“”s) - 92
smaller links is ke — 3)e

— T(xs)— T(zs) . 92c
= Y L) < 0y < 2l 2
yir (y:)>7(2s) ket (p — 3)”

from which the lemma follows. 7 Summing up the interferences over all rings yields

The next lemma similarly bounds the interference from o0 Uy (480" (®s) . 920 2
nodes that are in the same length-class. o< > IR < ( 5113)“ o

Lemma 4.4:Consider a scheduled link, with intended k=1 o) o2 k=1
senderz, and receiverz,. Let I° be the total interference < 24v(4fn)7") - 27 o —1
caused at,. by simultaneously transmitting nodgsfor which (1 —3)~ a—2
7(y;) = 7(xs). It holds that < 257(%)—1(471)7(1‘5)’

IO < v T(xs)—1 4 T(xs) . .
r S Zﬁ (4n) . where the second-to-last inequality follows from a standard
Proof: By Lemma 4.2, we know that for each link bound for Riemann’s zeta-function and the last one from
: o ' plugging in the definition of.. O

fi # fz, with transmitting nodey; and 7(y;) = 7(zs), it . . .
holds that2¢(f,) > ¢(f;) > %f(fx)- In the algorithm, after Finally, we bound the interference created by links that are

scheduling a linkfy, all links in the same length-class WhOSén higher length classes thaf.



Lemma 4.5:Consider a scheduled lini, with intended Lemma 4.7:Consider a diskC' with radiusr., and disks
senderz; and receiverz,. Let IF be the total interference D; with centersc; and radiusr;, r; > r. for all i. Let x be
caused at;,. by simultaneously transmitting nodgsfor which  the maximal number of such disk3; such that both of the

7(y;) < 7(xs). It holds that following properties hold:
I+ o< gﬂT(rs),l(M)T(zs) « Every D; overlaps withC' in at least one point.
T4 ' « No disk D; contains a centeg; for ¢ # j.

Proof: In F, every sender has a link to its closestnen, it holds that < 12.
neighbor and hencée(f,) < d(y;,z,) for all links f, with

intended transmittey;. The interference at, caused byy; is Proof: The proof follows a standard geometry argument.
therefore at most Assume for contradiction that there ait8 disks D; that

fulfil both properties stated in the lemma and consider the
P < v(46n)"Wde(f,)e

L(y) = < corresponding centers. There must be a cone of anglg
d(yi, ) U(fy)> centered at, that contains at least such centers;, cs, cs.
= p(4Bn)" W) < p(4pn)@) L Consider the two senders that are closest,tcsayc; andcs.

Because the cone’s angle sandr; > r. for every disk,c3

must be closer to eithef; or ¢, than to any point irC. Hence,

It o= Z I(ys) < 557(%),1(471)7(955). D3 either violates the lemma’s first or second property[]

" 4 Using Lemma 4.7, we can derive the following key lemma
that establishes the bound on the algorithm’s progress.

1

. . . . Lemma 4.8:Consider an arbitrary time-slat during the
Having thus bounded the interference caused by links 0 ecution of Algorithm 1 and e be the set of links that
all different length classes in Lemmas 4.3, 4.4, and 4.g 9

establishing the correctness of the algorithm is now easy. rl%mam to be scheduled at the beginning of time-sldiet the

. . constants be as defined in Lemma 4.7. It holds that for some
particular, we can show that every transmitted message IS

successfully received throughout the algorithm. constanty > 0,

Summing up over all nodes concludes the proof, i.e.,

yirT(yi) <7 (Ts)

Theorem 4.6:Consider an arbitrary time-slat All sched- E,| > 7] >y 7 )
uled transmissiong; in ¢ are received successfully by the (logon +2)k + 4(n + 4)? log,n
intended receivers. That is, the computed schedule is correct. Proof: The proof is based on a geometric argument. We
show that for every link selected in steps 7-9 of the scheduling
and receiverz,, that is scheduled for transmission in timeStProutine, there can be at most a logarithmic number of
slot ¢, i.e., ¢(z;) > 0. The transmission power of, is longer com_munlcatlon links that are deleted from i.e., not_
P, = v(4Bn)™@)0(£,)*. By Lemmas 4.3, 4.4, and 4.5, Wescr_leduled in tme—slozt. On the other r_land, when choosing
i a link, the algorithm removes no previously selected shorter
links from F;. From this observation, the lemma then follows.
I < I-+I0+1IF < 31@7(%)—1(4”)7(%). Consider an arbitrary iteration of the inner-most while loop
4 in which the link f* is selected for transmission in time-slot
Hence, definingX := f7()~1(4n)7(:) > 1, the SINR at I, i.e., By = E;U{f*}. Assume thatz, is the transmitting

Proof: Consider a link f, with intended sendetr:,

know that the total interference facedat is at most

the z,. is lower-bounded by node of f*. Because the algorithm considers the linksAp
o) . in increasingorder, only links that ardonger than f* can
W 46X be dropped fromF; in steps 12-15 of the same while-loop
SINR > N+ %57(“)_1(4@7(“) = 143X > 0. iteration. When bounding the number of longer links that can

be dropped due to the scheduling ff, we distinguish two
In view of Inequality (1), this proves that every transmissioBases. First, we boun#&®(f*) which denotes the number of
scheduled by Algorithm 1 is successfully received. [ dropped links that are in the same length classfagLine
Proving correctness (i.e., the absence of collisions) of thg). Secondly, we considd?™ (f*), i.e., the number of links

computed schedule is only one side of the story. In order #® higher length classes erased frofa in the same iteration
obtain an efficient schedule, we must also guarantee that mafythe while-loop (Line 15).

links can simultaneously be scheduled, such that all commu+ne start with PY(f*). For each dropped linkf,, with
nication requests can quickly be satisfied. In Lemma 4.8, we ) — 7(fuo), it holds that2e(f*) > (fu,) > £(f*).
derive a lower bound on the amount pfogressachieved in - consider for every,,, a diskD,, of radius1/(f,.) around its
every single time-step of the algorithm. Specifically, we showansmitterz,,. BecauseF; C F, and becaus#, is a nearest

that at each time, at least &2(;5;—) fraction of the links in neighbor forest, disksD, do not overlap. Furthermore, the
F that remain to be schedulede indeed scheduled. area of each such disk is

Before proving this claim in Lemma 4.8, however, we
require the following geometric helper lemma. A(D,) = %g(fw)% > ig(f*)%,




By the condition given in step 12 of the scheduling subroutinaround each corresponding sendgrNotice that there are at

a link f,, with 7(f*) = 7(f.,) is dropped only ifz, € leastk+ 1 disksD, each of which overlaps with disk' in at
B(zs,ul(f*)). Hence, the transmitting node, must be least one point (where; is located) and no dislD; contains
located within distanceu/(f*) + £(fuw) < (u+ 2)¢(f*) of the center of another disk);, because the linkg; form a

zs. That is, all disksD,, corresponding to removed links arenearest neighbor forest. However, the possibility of packing
entirely contained in a diskD* centered atr; with radius « + 1 disks D; in such a way contradicts Lemma 4.7 and
(u+ 4)¢(f*). Thus, the number of dropped links i°(f*) hence, it follows that there can be at mastinks f; with

is bounded by 0s; = 1.
(1 + 4)20(f*)2m Next, we bound the remaining number of dropped links
Po(f*) < ;11—2 :4(u+4)2. fi whose receivers; are situated inCz. Each of these
al(fr)em remaining links has length at least(43n)%¢(f*) because

We now turn our attention to the more complicated cage; > 2. Moreover, all receivers are located %, that is,
P+(f*). Recall that the sending node ¢f is z, and denote d(z,7;) < (46n)=£(f*) < L(48n)2¢(f*). Again, it follows
by fi,..., fr all links that are dropped fronF, in Lines 14 by Lemma 4.7 that the number of dropped links with > 2
and 15 of the schedule subroutine for whiefif*) > 7(f;), in Cs is upper-bounded by. O

i.e., d;; > 0. For each such linkf;, s; and r; denote its | emma 4.10:It holds for alli that if »; € Ry, k > 3, then
intended sender and receiver, respectively. The lifikare ., e R, for h > a(k — 1). That is, for anyk > 3, there
ordered according to the distandzs,r;), where f, is the can be at most dropped receivers in ringBy . .., Rogs—_1)-
link whoser; is the closest intended receiver fram.

B hedeion of e ot ain. s droppad and |, ECF, L0105 fom st (9, 4, 0 e e,
only if r; € B(xs, (40n) "« £(f*)). Turning this argument Ry, Rugro1) must be of length at leas}(45n) (f*)

around, we observe that a link;, whose receiver; is at Sl
distance more thafi3n) % £(£*)) from ., is only drozpped if (otherwise, it would not be dropped). On the other hand, the
dsi +1 > ¢ and consequentlyly; > . fr; combination with diStance between a receiver in these rings ands at most

Lemma 4.2, this yields the fact that for a dropped lifkwith (2. ) < (480) S 0(f) = (48n) & 0(f*)
d(zs,rs) > (4Bn)5L(f*), ®3) < %(4ﬂn)k€(f*) < 0(f),
the length/(f;) of the link must be at least where the second to last inequality holds for> 1, a >
) = s @ %5, we can draw a 69, with radus (1) around each
In the following, consider an exponentially growing serieS€Ndes; having its receiver; in rings Ry, . .., Ry (,—1). EaCh

of disksC;, j = 1,2,... of radiusr; = (44n)% ((f*) centered of t.hese disks must overlap with. the disk cgntere@@bf
at z,. Furthermore, define gng R, as the aread’; 1 \ Cj, rad|us(4ﬁn)’f‘1+w(f*) and_ no d'SkD". contains the_ center
i.e., it holds for every node; € R; that of another disk. Hence, as illustrated in Figure I\(, it fo!lows
_ v by Lemma 4.7 that there can be at mestiropped links with
(ABn)=L(f*) < d(zs,z;) < (4ﬁn)%€(f*). receiver in ringsRky, . .., Ro(x—1)- O
Having proven Lemmas 4.9 and 4.10, we can now bound the
tal number of dropped links and thus conclude the proof of
emma 4.8. By Lemma 4.9, we know that at most the fivst
geiverSrl, ...,r9, Ccan be located it’;. All other receivers
ust be located in a ringe;, for £ > 3. By applying Lemma

A key observation for the proof is that there cannot be man
links dropped from rings which are close to one another. T f
intuition is formalized using two helper lemmas. Lemma 4.
shows that there can only be a constant number of receiver
in the first three rings. In Lemma 4.10 we then prove that . .
for an arbitraryi, the receiver; is located inR;,, k > 3, there 10, it follows that the receivers,.,, cannot be closer ta,

cannot be more than other intended receivers from droppecman n r'nglfa(kfl) :f%uf rize';erg?wrl cannot Ibe cI<3Is§r
links in the subsequent(k — 1) — 1 rings. anin ringR,,2_., and so forth. By thus recursively applying

] ) Lemma 4.10, it follows that receiver ;.1 cannot be
Lemma 4.9:1t holds thatrs,; is located outside of’s,

) ) . t ) closer than in ringRy;, where); is
i.e., at most2« links with receiver inC5 are dropped from '
Fi.

Proof: First, consider all linksf; for which dé5; = 1.

. NG S
Each such link has length at ledsff;) > 5(4n)¢(f*). Since Because there are at mastdifferent length classes, the last

fi was dropped, its receiver must be located within distanﬁ%g from which a receiver (and its link) can be droppedis

(4pn)V/«4(f*) of x,. For 3 > 1 and o > 2, it holds that Conse :

. quently, the total number of links that can be dropped
(48n)te < 3(48n). Now, assume for contradiction thatt 1 S .
or more links f; with §,; = 1 exist. Also, draw a diskC' of when selecting linkf* is at most(j, +2)x, where

radius(46n)1/a£(f*) aroundz, and disksD; of radius/( f;) adm < n = g, < log,n,

j—1
A= 2a<7—2ah > ol.
h=1



Theorem 4.12:For every network, Algorithm 1 produces a
correct schedulé that induces a strongly connected subgraph.
Furthermore, the length of the schedule7i&S) € O(log*n).

Proof: As for the scheduling complexity, we start by
showing that every subroutine call requires at moglogn)
time-slots. Letm denote the total number of links that are
to be scheduled during a subroutine call, i.e., initidify] =
m < n. By Lemma 4.8, at least @(@) fraction of the
links in F that remain to be scheduled are scheduled in each
time-slot in the subroutine. After the first time-slot, at least

nodes have been scheduled. Generally, by repeatedly

m
Xlogan
SRR applying Lemma 4.8, it follows that after thg" time-slot,

Xs R, Rytet) for £ = Inm - log,n, the number of links that have not yet
been scheduled is at most
Fig. 3. lllustration of the proof of Lemma 4.10. Because the length of links &
fa, fv, @and f. is larger than the radius of the disk in which all receivers b%
must be located, at most such links can exist. In the example, the closest m:-
neighbor ofs. is s, and notr., which yields the contradiction.

< m-eXmoooq,

a log,n

That is, each invocation of thechedule()subroutine requires
at mostO(log®n) time-slots. The number of subroutine calls in
which implies P (£*) < (log,n + 2)x each phase of the algorithm (lines 12-14) is cledwly(45n).
— o't . . . . )
In summary, for every link that is selected in the inner- All that remains to be done to derive the algorithm’s

most while-loop of the schedule subroutine for scheduling ﬁ{:heduling complexity is to bound th_e number .Of phases.
a time-slot¢, at most By Lemma 4.11, the number of active nodes is at least

halved in every phase. Therefore, at mastn phases are
PU(f) + PY(f*) < 4(u+4)?+ (log,n + 2)x required until there remains only a single active node upon
which the algorithm terminates. Putting everything together,
communication links are dropped fro;. Therefore, the the algorithm’s scheduling complexity is
number of communication link$E;| that are scheduled in

time-slot¢ is at least T(S) < Inm-log,n -log(44n) - logn € O(log'n).
By > |7 By Theorem 4.6, every transmitted message is successfully
T 4(u+4)2 + (log,n+2)k + 17 received. Furthermore, observe that the union of all scheduled

links 7, forms a directed tree towards a single node (the
one node that remains active at the end) in the network. This

f hieved by the aldorith h heduling t bde can then connect the network with a single transmission.
of progress achieved by the algoriinm when scheduling nce, the union of all scheduled links is strongly connected,

Imk_s selected in O”@h‘?‘se In pz?\rt|cular, it allows us to i.e,, there exists a path between all pairs of nodes. [
derive a bound on the time required to schedule the nearest

neighbor forest in this phase. However, we also need to0 V. LINEAR POWERASSIGNMENTALGORITHM
bound the number of phases that the algorithm executes befor
termination. This is done in the following lemma.

from which Lemma 4.8 follows.
Lemma 4.8 provides us with a lower bound on the amou

Elearly, MAC layer protocols based on uniform or linear
power assignment strategies have the practical advantage that
Lemma 4.11:Let A, denote the set of active nodes at thegheir implementation is particularly simple. The lower bound

beginning of phase during the execution of Algorithm 1. For of Section I1I for uniform or linear power assignment protocols
eachp, it holds that|A, 1| < [A,|/2. is based on a network in which some communication links
Proof: In line 11 of Algorithm 1 all nodes that have an®'® exponentially longer than ot'hers. Thi; raises the que;tion
outgoing link (i.e., that transmit during this phase) are remov&¢1€ther the performance of uniform or linear power assign-
from A. Consider the connected components of forgst Ment approaches may also deteriorate as badly in case the
In each such connected component, there is at raside length of the communication link is less varied. If, for instance,

that has no outgoing link, because each connected comporlEif@" Power assignment strategies perform well in randomly
forms a directed tree with a unique sink. The claim followd€Ployed average-case networks, heuristic protocols featuring

because each connected component consists of at least %(R)Ole linear power a_ssignmen_ts may be employed in non-
nodes. critical networks in spite of their bad worst-case scheduling

Finally, we are ready to prove the main theorem of this seMPIexity.

tion containing the claimed correctness and efficiency results'n this section, we propose and analyze an algorithm that
of Algorithm 1. adopts dinear power assignmentpecifically, we show that

this algorithm performs poorly only in scenarios in which there



Algorithm 2 Linear Power Assignment Algorithm Proof: The proof follows exactly along the lines of the

Input: An arbitrarily located set of node¥ proof of Theorem 4.4 (only using different constants) and is

Output: A scheduleS in which every noder € X therefore omitted from this paper. O
can send successfully to its closest neighbor.

1: For eachr; € X, let f; be the link to its closest neighbor;
2. Let L= Ly,...,La_1, such thatL, is the set 1 2 1 2 1 2
of links of length2¥ < ¢(f;) < 2++1; <
3 p=67% 23(2%;1); P> AN, t=1; u2k 3//4 3 4 3 4
4: foreach L; #( do
5. Partition thﬁ plane in squares of width- 2%; 1 2 1 2 [ 1 2
6: for j=1to 4 do . ;
7 Select a maximal independent set of squgres 73 4 3 4 3|4
(cf. Figure 4); —
8: repeat u2"
9: For each selected squafg pick one link
fi € L, whose intended sender. is in R; Fig.v4. In line 7 of Algorithm 2, the algorithm picks all squares numbered
) . by j. The example shows an inner-loop iteration for length-clagsand
10: ¢t($77) =P f(fl) ! . . . j = 3. The algorithm schedules one unscheduled communication link from
11: Do not consider linkf; in future iterations; each selected square (if there exists one).
12: t=t+1;
13: until all links in active squares have been picked;
14:  end for Theorem 5.2:The scheduleS obtained by Algorithm 2 has
15: end for length at mostT'(S) € O(g(V)) and fulfills property®,,,;,,
16: S :={d1,...,0t_1}; i.e., each node can send successfully at least once.

Proof. Correctness follows directly from Lemma 5.1 and
from the observation that for every sender there is a time-
are links belonging to many different orders of magnitudgjot ¢ for which ¢, (z;) > 0. As for the length of the schedule,
For simplicity of presentation, we again consider the simpige first observe that there are at mastg(V)) non-empty
network propertyV,,;,, i.e., we want that every node canength classes, i.e., iterations of the outermost loop. Hence,
transmit successfully at least once. By applying a technigiteonly remains to prove that a single phase requires only a
similar to the one in Section IV, strong connectivity can bgonstant number of time-slots.
achieved at the cost of an addition@(logn) factor in the  consider the phase in which length-class is scheduled.
scheduling complexity. We first show that the number of potential transmitters in a
The diversity g(V) of a set of nodes is the number ofcell can be at most a constant. Because every transmitting
magnitudes of distances [19]. FormallyV') is defined as  node has a link to itslosestneighbor, the disk®D; of radius
10(f;) > 21 around each transmitter; do not overlap.
g(V) = {m | Jwi, x5 € X+ [log(d(wi, x5))] = m}|. Consider all nodes located in a céll The disksD; belonging
to these nodes are completely contained in a square of side-
length (1 + 1) - 2%. Hence, it follows from the standard area
?chking argument that the number of links @his at most
4(p +1)% € O(1) in each cell. The proof is now concluded

log (2™) = n. In the sequel, we show that Algorithm 2b ; - :
. . , y observing that in a grid, always one fourth of the cells can
achieves a scheduling complexity B(5) € O(g(V)). be scheduled independently as shown in Figure 4. O

The idea of Algorithm 2 is simple: simultaneously schedule In combination with the “growing component’ technique

links of.3|m|lar length, while gua'ranteemg a Igrge enougLFsed in Section 1V, the following theorem can be derived.
buffer distance between each pair of transmitting nodes. In

each phase of the algorithm, only links belonging to the sameTheorem 5.3:Algorithm 2 can be adapted to obtain a

length class are scheduled. In order to schedule one such prg&@duling algorithm for the strong-connectivity property with

for links of length2* < ¢(f;) < 2¥*1, the algorithm partitions Scheduling complexity) (min(n, g(V') - log n)).

the plane into grid-cells of width - 2*. In each time-slot, it Proof: If g(V')-logn < n, we combine Algorithm 2 with

9“09393 a maximal mdependent_ set of cells and selects e technique of merging clusters iteratively in each phase,

link in each such cell for scheduling. _ as done in Algorithm 1. Using Lemma 4.11, it requires at
In the foIIqwmg, we again establish the claimed correctneﬁ%sto(bgn) phases (each taking tim@(g(V))) until the

and scheduling complexity results. scheduled links form a directed tree towards a single node.
Lemma 5.1:Every node can send successfully in the uniqué g(V') - logn > n, the algorithm can simply schedule each

time-slot¢ in which ¢;(z;) > 0. node individually. O

In our case,g(V) denotes the number of non-empty lengt
classes of the nearest neighbor forest links. In the exam
shown in Figure 1, for instance, the diversity §§V) =



It is interesting to compare the result of Algorithm 2 wittmetworks. Moreover, the proposed algorithms do either not
the solution given in Section IV. Since the diversigyV) yield provable worst-case guarantees or are based on solutions
can be as large as, the O(log4n) schedule by Algorithm 1 to complex optimization problems that can only be solved
improves the scheduling complexity by an exponential facton exponential time in the number of links or nodes in the

network.
VI. RELATED WORK Not surprisingly, the study ofonnectivityin networks has

Our work has connections to several different areas that haalerays been of great interest to the networking community.
been the focus of attention in the networking community. Ibsing results from percolation theory, [11] investigates the
this section, we want to highlight some of these connectioritical power level that is necessary forandomly deployed

It is clear that our work has ties toloring problems and wireless network to become connected under the assumption
more specifically, MAC layer protocols. The scheduling conthat all nodes transmit at the same power level. Ever since,
plexity of a wireless network expresses the number of timeiuch research effort has been directed towards studying
slots that are required until a certain set of communicati@symptotic connectivity requirements in randomly distributed
requests can be satisfied. A multiplicity of MAC layers havevireless networks, e.g. [31], [8]. What these papers do not
been proposed for wireless multi-hop networks [5], [26], [20Fonsider, however, is the complexity of actuafigheduling
[22], [14], some of them particularly designed for energyhe communication links that form the connected network.
constrained networks such as sensor networks [30], [32], [23].While the above papers study connectivityrandom net-
The results obtained in Sections Il of our paper place stromgprks the study oftopology controlhas typically focused on
lower bounds on the amount of time required by most of theaebitrary, possibly worst-case networks. In topology control,
MAC protocols in order to schedule a set of requests in tike idea is that instead of each node transmitting at a maximum
physical model. On the other hand, the algorithm in Section Ivower level, the nodes collaborate to determine a transmission
theoretically constitutes a close to optimal way of schedulimgpwer that results in a network topology which exhibits
requests, even when these requests are constrained to safisfyrable properties. Not surprisingly, the first topology con-
the connectivity property. trol protocols focused on guaranteeing the most basic of all

The traditional graph-theoretic way of studying schedulingetwork properties [24], i.econnectivity Subsequently, a lot
problems results ircoloring problems. When modeling theof effort has been made in developing more subtle network
network as a grapl? = (V, E), the design of a collision- structures that combine desirable properties such as low energy
free MAC layer boils down to obtaining 2-hop coloring of paths, low node degrees, planarity, or sparseness, e.g., [28],
the nodes in the interference graph [25]. The efficiency §27], [18] or to study heterogenous networks [17].
such a MAC layer protocol then depends on the number of The problem of topology control is that it assumes a
colors used in the process. Scheduling and coloring problestatic network model, i.e. without considering the fact that
of this kind have been studied in a variety of papers, e.g., [18e selected communication links may not be scheduled in a
[21], [25], [15]. Algorithmic aspects otapacityin wireless reasonable amount of time. In this regard, topology control
networks have also been studied in various graph models, ésga theoretic notion that abstracts away physical restrictions
[16]. caused by interference. A recent step in the evolution of

One shortcoming of these and related graph-theoreti¢apology control has been to explicitly take into consideration
models is that they ignore the accumulated interference tbe issue ofinterference Although again based on static
a large number of distant nodes. Even more severely, th&saph-theoretical communication model, [6] proves that all
models imply that simultaneous transmissions on proximat&ssic topology control algorithms fail to actually reduce
links necessarilyinterfere with each other, which is not trueinterference in wireless networks.
in a SINR environment. Specifically, a nodge may receive
a message frome, in spite of being in thetransmission- VII. CONCLUSIONS
range of other simultaneous transmissions, if the transmissionClearly, our results in this paper are not directly comparable
powers of the different senders are properly adjusted. A results on the capacity of wireless networks. Nonetheless,
shown in this paper, such highhon-linear power assignmentsit is intriguing to discuss the connections between these two
are in fact indispensable ingredients of any fast schedulioggmplementing approaches. The results on the capacity [12]
algorithm. Studying scheduling in graph-theoretical modets wireless networks essentially give a negative answer to the
simply abstracts away this crucial aspect. possibilities of wireless networks by limiting the throughput

Integrated scheduling-power control problems in the SINfRat can be achieved per node as the number of nodes in the
model have been studied in various papers, e.g., [7], [9], [4letwork grows. In contrast, our result is of a more positive
[3]. In [4], [3], the impact of power assignments to nodes onature. Specifically, our result shows that when using proper
the achievable throughput capacity is studied, whereas [7], MAC layer protocols and power assignment schemes, complex
study the problem of finding a schedule and power controbmmunication requests can theoretically be scheduled effi-
policy that minimizes the total average transmission poweiently even in large-scale worst-case networks. This implies
in the wireless multi-hop network. None of the above papetisat unlike for the capacity, there exists only little theoret-
provides a bound on the scheduling complexity in wirelessal limitation to scaling as far as the actusthedulingof



transmissions in wireless networks is concerned. Interestinghz]
however, such a fast solution cannot be achieved using the
intuitive uniform or linear power assignment schemes that have'
been widely adopted by standard MAC layer and scheduling
solutions. Instead, we have shown that a more subtle, néHY
linear handling of the transmission powers at nodes is required
in order to achieve efficient and scalable solutions. [15]
Our work opens a wide range of directions for future

research. Most obviously, it would be interesting to investigate
the scheduling complexity of other network properties. Morgt6]
over, it would be intriguing to gain a deeper understanding of
the connections between the notionaafpacity interference

and thescheduling complexitpf wireless networks. We are [17]
convinced that a thorough understanding of these notions could
help in designing better network protocols. [18]
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