Joël Mathys
Distributed Computing Group
Computer Engineering and Networks Laboratory (TIK)
Department Electrical Engineering (D-ITET)
Office ETZ G 63
ETH Zurich
Gloriastrasse 35
8092 Zurich
Switzerland
| phone | +41 44 63 20417 |
| fax | +41 44 63 21036 |
Publications
-
Long-Range Ising Model: A Benchmark for Long-Range Capabilities in Graph Learning
Joël Mathys, Henrik Christiansen, Federico Errica and Francesco Alesiani.
22nd International Workshop on Mining and Learning with Graphs (MLG@ECMLPKDD), Porto, Portugal, September 2025.
BibTeX -
Learn to Jump: Adaptive Random Walks for Long-Range Propagation through Graph Hierarchies (oral)
Joël Mathys and Federico Errica.
ComBayNS Workshop @ IJCNN 2025 , Rome, Italy, June 2025.
BibTeX -
Reinforcement Learning for Locally Checkable Labeling Problems
Florian Grötschla, Joël Mathys, Loïc Holbein and Roger Wattenhofer.
The Seventeenth Workshop on Adaptive and Learning Agents at AAMAS, Detroit, USA, May 2025.
BibTeX -
Synthetic Data for Blood Vessel Network Extraction
Joël Mathys, Andreas Plesner, Jorel Elmiger and Roger Wattenhofer.
Will Synthetic Data Finally Solve the Data Access Problem? (SynthData@ICLR), Singapore, April 2025.
BibTeX -
Beyond Interpolation: Extrapolative Reasoning with Reinforcement Learning and Graph Neural Networks
Niccolò Grillo, Andrea Toccaceli, Benjamin Estermann, Joël Mathys, Stefania Fresca and Roger Wattenhofer.
1st Workshop on Neural Reasoning and Mathematical Discovery (NEURMAD@AAAI25), Philadelphia, USA, March 2025.
BibTeX -
GraphFSA: A Finite State Automaton Framework for Algorithmic Learning on Graphs
Florian Grötschla, Joël Mathys, Christoffer Raun and Roger Wattenhofer.
27th European Conference on Artificial Intelligence (ECAI), Santiago de Compostela, Spain, October 2024.
External BibTeX -
CoRe-GD: A Hierarchical Framework for Scalable Graph Visualization with GNNs (Best poster award AT LOGML 2024)
Florian Grötschla, Joël Mathys, Robert Veres and Roger Wattenhofer.
12th International Conference on Learning Representations (ICLR), Vienna, Austria, May 2024.
External BibTeX -
SALSA-CLRS: A Sparse and Scalable Benchmark for Algorithmic Reasoning
Julian Minder, Florian Grötschla, Joël Mathys and Roger Wattenhofer.
2nd Learning on Graphs Conference (LoG), Virtual, November 2023.
External BibTeX -
SURF: A Generalization Benchmark for GNNs Predicting Fluid Dynamics
Stefan Künzli, Florian Grötschla, Joël Mathys and Roger Wattenhofer.
2nd Learning on Graphs Conference (LoG), Virtual, November 2023.
External BibTeX -
Abstract Visual Reasoning Enabled by Language
Giacomo Camposampiero, Loïc Houmard, Benjamin Estermann, Joël Mathys and Roger Wattenhofer.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2023.
External BibTeX -
Learning Graph Algorithms With Recurrent Graph Neural Networks
Florian Grötschla, Joël Mathys and Roger Wattenhofer.
Workshop on Graphs and more Complex structures for Learning and Reasoning (GCLR@AAAI), Washington D.C., USA, February 2023.
External BibTeX -
Hierarchical Graph Structures for Congestion and ETA Prediction
Florian Grötschla and Joël Mathys.
Traffic4cast@NeurIPS22, December 2022.
External Slides (PDF) Slides (PPT) BibTeX -
Decentralized Graph Processing for Reachability Queries
Joël Mathys, Robin Fritsch and Roger Wattenhofer.
18th International Conference on Advanced Data Mining and Applications (ADMA), Brisbane, Australia, November 2022.
External Slides (PDF) Slides (PPT) BibTeX






























